The extended skew Gaussian process for regression

被引:4
|
作者
Alodat M.T. [1 ]
Al-Rawwash M.Y. [2 ]
机构
[1] Department of Mathematics, Statistics and Physics, Qatar University, Doha
[2] Department of Mathematics, University of Sharjah, Sharjah
关键词
Extended skew normal distribution; Gaussian process for regression;
D O I
10.1007/s40300-014-0046-z
中图分类号
学科分类号
摘要
In this article, we propose a generalization to the Gaussian process regression(GPR) model called the extended skew Gaussian process for regression (ESGP) model. The ESGP model works better than the GPR model when the errors are skewed. We derive the predictive distribution for the ESGP model at a new input. Also we apply the ESGP model to FOREX data and we find that it fits the Forex data better than the GPR model. © 2014 Sapienza Università di Roma.
引用
收藏
页码:317 / 330
页数:13
相关论文
共 50 条
  • [31] Sparse Spectrum Gaussian Process Regression
    Lazaro-Gredilla, Miguel
    Quinonero-Candela, Joaquin
    Rasmussen, Carl Edward
    Figueiras-Vidal, Anibal R.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2010, 11 : 1865 - 1881
  • [32] Hierarchical Gaussian process mixtures for regression
    J.Q. Shi
    R. Murray-Smith
    D.M. Titterington
    Statistics and Computing, 2005, 15 : 31 - 41
  • [33] Efficient sparsification for Gaussian process regression
    Schreiter, Jens
    Duy Nguyen-Tuong
    Toussaint, Marc
    NEUROCOMPUTING, 2016, 192 : 29 - 37
  • [34] Gaussian Process Regression on Nested Spaces
    Blanchet-Scalliet, Christophette
    Demory, Bruno
    Gonon, Thierry
    Helbert, Celine
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2023, 11 (02): : 426 - 451
  • [35] Variational Tobit Gaussian Process Regression
    Basson, Marno
    Louw, Tobias M. M.
    Smith, Theresa R. R.
    STATISTICS AND COMPUTING, 2023, 33 (03)
  • [36] Dynamic Transfer Gaussian Process Regression
    Wei, Pengfei
    Qu, Xinghua
    Song, Wen
    Ma, Zejun
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 2118 - 2127
  • [37] Implicit Manifold Gaussian Process Regression
    Fichera, Bernardo
    Borovitskiy, Viacheslav
    Krause, Andreas
    Billard, Aude
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [38] Compressed Gaussian Process for Manifold Regression
    Guhaniyogi, Rajarshi
    Dunson, David B.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [39] Coded Distributed Gaussian Process Regression
    Zeulin, Nikita
    Galinina, Olga
    Himayat, Nageen
    Andreev, Sergey
    IEEE COMMUNICATIONS LETTERS, 2023, 27 (01) : 372 - 376
  • [40] GAUSSIAN PROCESS REGRESSION IN THE FLAT LIMIT
    Barthelme, Simon
    Amblard, Pierre-Oliviera
    Remblay, Nicolas
    Usevich, Konstantin
    ANNALS OF STATISTICS, 2023, 51 (06): : 2471 - 2505