Gaussian Process Regression for Structured Data Sets

被引:14
|
作者
Belyaev, Mikhail [1 ,2 ,3 ]
Burnaev, Evgeny [1 ,2 ,3 ]
Kapushev, Yermek [1 ,2 ]
机构
[1] Inst Informat Transmiss Problems, Moscow 127994, Russia
[2] DATADVANCE Llc, Moscow 109028, Russia
[3] MIPT, PreMoLab, Dolgoprudnyi 141700, Russia
来源
关键词
Gaussian process; Structured data; Regularization;
D O I
10.1007/978-3-319-17091-6_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Approximation algorithms are widely used in many engineering problems. To obtain a data set for approximation a factorial design of experiments is often used. In such case the size of the data set can be very large. Therefore, one of the most popular algorithms for approximation - Gaussian Process regression - can hardly be applied due to its computational complexity. In this paper a new approach for a Gaussian Process regression in case of a factorial design of experiments is proposed. It allows to efficiently compute exact inference and handle large multidimensional and anisotropic data sets.
引用
收藏
页码:106 / 115
页数:10
相关论文
共 50 条
  • [31] Hierarchical Gaussian Process Regression
    Park, Sunho
    Choi, Seungjin
    PROCEEDINGS OF 2ND ASIAN CONFERENCE ON MACHINE LEARNING (ACML2010), 2010, 13 : 95 - 110
  • [32] BOUNDED GAUSSIAN PROCESS REGRESSION
    Jensen, Bjorn Sand
    Nielsen, Jens Brehm
    Larsen, Jan
    2013 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2013,
  • [33] Constrained Multi-Output Gaussian Process Regression for Data Reconciliation
    Horak, W.
    Louw, T. M.
    Bradshaw, S. M.
    IFAC PAPERSONLINE, 2024, 58 (04): : 324 - 329
  • [34] Byzantine-tolerant federated Gaussian process regression for streaming data
    Zhang, Xu
    Yuan, Zhenyuan
    Zhu, Minghui
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [35] Data-Aided Sensing for Gaussian Process Regression in IoT Systems
    Choi, Jinho
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (09): : 7717 - 7726
  • [36] Automatic fault detection in seismic data using Gaussian process regression
    Noori, Maryam
    Hassani, Hossein
    Javaherian, Abdolrahim
    Amindavar, Hamidreza
    Torabi, Siyavash
    JOURNAL OF APPLIED GEOPHYSICS, 2019, 163 : 117 - 131
  • [37] Gaussian process regression: Active data selection and test point rejection
    Seo, S
    Wallat, M
    Graepel, T
    Obermayer, K
    IJCNN 2000: PROCEEDINGS OF THE IEEE-INNS-ENNS INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOL III, 2000, : 241 - 246
  • [38] Augmented kludge waveforms and Gaussian process regression for EMRI data analysis
    Chua, Alvin J. K.
    11TH EDOARDO AMALDI CONFERENCE ON GRAVITATIONAL WAVES (AMALDI 11), 2016, 716
  • [39] Foreground modelling via Gaussian process regression: an application to HERA data
    Ghosh, Abhik
    Mertens, Florent
    Bernardi, Gianni
    Santos, Mario G.
    Kern, Nicholas S.
    Carilli, Christopher L.
    Grobler, Trienko L.
    Koopmans, Leon V. E.
    Jacobs, Daniel C.
    Liu, Adrian
    Parsons, Aaron R.
    Morales, Miguel F.
    Aguirre, James E.
    Dillon, Joshua S.
    Hazelton, Bryna J.
    Smirnov, Oleg M.
    Gehlot, Bharat K.
    Matika, Siyanda
    Alexander, Paul
    Ali, Zaki S.
    Beardsley, Adam P.
    Benefo, Roshan K.
    Billings, Tashalee S.
    Bowman, Judd D.
    Bradley, Richard F.
    Cheng, Carina
    Chichura, Paul M.
    DeBoer, David R.
    Acedo, Eloy de Lera
    Ewall-Wice, Aaron
    Fadana, Gcobisa
    Fagnoni, Nicolas
    Fortino, Austin F.
    Fritz, Randall
    Furlanetto, Steve R.
    Gallardo, Samavarti
    Glendenning, Brian
    Gorthi, Deepthi
    Greig, Bradley
    Grobbelaar, Jasper
    Hickish, Jack
    Josaitis, Alec
    Julius, Austin
    Igarashi, Amy S.
    Kariseb, MacCalvin
    Kohn, Saul A.
    Kolopanis, Matthew
    Lekalake, Telalo
    Loots, Anita
    MacMahon, David
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 495 (03) : 2813 - 2826
  • [40] Modal Analysis of Spatiotemporal Data via Multivariate Gaussian Process Regression
    Song, Jiwoo
    Huang, Daning
    AIAA JOURNAL, 2025, 63 (02) : 732 - 749