BOUNDED GAUSSIAN PROCESS REGRESSION

被引:16
|
作者
Jensen, Bjorn Sand [1 ]
Nielsen, Jens Brehm [1 ]
Larsen, Jan [1 ]
机构
[1] Tech Univ Denmark, Dept Appl Math & Comp Sci, DK-2800 Lyngby, Denmark
关键词
BETA REGRESSION;
D O I
10.1109/MLSP.2013.6661916
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We extend the Gaussian process (GP) framework for bounded regression by introducing two bounded likelihood functions that model the noise on the dependent variable explicitly. This is fundamentally different from the implicit noise assumption in the previously suggested warped GP framework. We approximate the intractable posterior distributions by the Laplace approximation and expectation propagation and show the properties of the models on an artificial example. We finally consider two real-world data sets originating from perceptual rating experiments which indicate a significant gain obtained with the proposed explicit noise-model extension.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Neuronal Gaussian Process Regression
    Friedrich, Johannes
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [2] RECURSIVE GAUSSIAN PROCESS REGRESSION
    Huber, Marco F.
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 3362 - 3366
  • [3] A Gaussian process robust regression
    Murata, N
    Kuroda, Y
    [J]. PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2005, (157): : 280 - 283
  • [4] Bagging for Gaussian process regression
    Chen, Tao
    Ren, Jianghong
    [J]. NEUROCOMPUTING, 2009, 72 (7-9) : 1605 - 1610
  • [5] Overview of Gaussian process regression
    He, Zhi-Kun
    Liu, Guang-Bin
    Zhao, Xi-Jing
    Wang, Ming-Hao
    [J]. Kongzhi yu Juece/Control and Decision, 2013, 28 (08): : 1121 - 1129
  • [6] Hierarchical Gaussian Process Regression
    Park, Sunho
    Choi, Seungjin
    [J]. PROCEEDINGS OF 2ND ASIAN CONFERENCE ON MACHINE LEARNING (ACML2010), 2010, 13 : 95 - 110
  • [7] Gaussian Process Regression Model in Spatial Logistic Regression
    Sofro, A.
    Oktaviarina, A.
    [J]. MATHEMATICS, INFORMATICS, SCIENCE AND EDUCATION INTERNATIONAL CONFERENCE (MISEIC), 2018, 947
  • [8] Sparse Additive Gaussian Process Regression
    Luo, Hengrui
    Nattino, Giovanni
    Pratola, Matthew T.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [9] Gaussian Process Regression for Array Interpolation
    Gupta, Arjun
    Christodoulou, Christos G.
    Martinez-Ramon, Manel
    Luis Rojo-Alvarez, Jose
    [J]. 2019 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND USNC-URSI RADIO SCIENCE MEETING, 2019, : 1433 - 1434
  • [10] Distributed robust Gaussian Process regression
    Sebastian Mair
    Ulf Brefeld
    [J]. Knowledge and Information Systems, 2018, 55 : 415 - 435