BOUNDED GAUSSIAN PROCESS REGRESSION

被引:16
|
作者
Jensen, Bjorn Sand [1 ]
Nielsen, Jens Brehm [1 ]
Larsen, Jan [1 ]
机构
[1] Tech Univ Denmark, Dept Appl Math & Comp Sci, DK-2800 Lyngby, Denmark
关键词
BETA REGRESSION;
D O I
10.1109/MLSP.2013.6661916
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We extend the Gaussian process (GP) framework for bounded regression by introducing two bounded likelihood functions that model the noise on the dependent variable explicitly. This is fundamentally different from the implicit noise assumption in the previously suggested warped GP framework. We approximate the intractable posterior distributions by the Laplace approximation and expectation propagation and show the properties of the models on an artificial example. We finally consider two real-world data sets originating from perceptual rating experiments which indicate a significant gain obtained with the proposed explicit noise-model extension.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Cleaning Images with Gaussian Process Regression
    Zhang, Hengyue
    Brandt, Timothy D.
    [J]. ASTRONOMICAL JOURNAL, 2021, 162 (04):
  • [22] Variational Tobit Gaussian Process Regression
    Marno Basson
    Tobias M. Louw
    Theresa R. Smith
    [J]. Statistics and Computing, 2023, 33
  • [23] Model Selection for Gaussian Process Regression
    Gorbach, Nico S.
    Bian, Andrew An
    Fischer, Benjamin
    Bauer, Stefan
    Buhmann, Joachim M.
    [J]. PATTERN RECOGNITION (GCPR 2017), 2017, 10496 : 306 - 318
  • [24] Skew Gaussian Process for Nonlinear Regression
    Alodat, M. T.
    Al-Momani, E. Y.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (23) : 4936 - 4961
  • [25] Hierarchical Gaussian process mixtures for regression
    Shi, JQ
    Murray-Smith, R
    Titterington, DM
    [J]. STATISTICS AND COMPUTING, 2005, 15 (01) : 31 - 41
  • [26] Sparse greedy Gaussian process regression
    Smola, AJ
    Bartlett, P
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 13, 2001, 13 : 619 - 625
  • [27] Sparse Spectrum Gaussian Process Regression
    Lazaro-Gredilla, Miguel
    Quinonero-Candela, Joaquin
    Rasmussen, Carl Edward
    Figueiras-Vidal, Anibal R.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2010, 11 : 1865 - 1881
  • [28] Hierarchical Gaussian process mixtures for regression
    J.Q. Shi
    R. Murray-Smith
    D.M. Titterington
    [J]. Statistics and Computing, 2005, 15 : 31 - 41
  • [29] Efficient sparsification for Gaussian process regression
    Schreiter, Jens
    Duy Nguyen-Tuong
    Toussaint, Marc
    [J]. NEUROCOMPUTING, 2016, 192 : 29 - 37
  • [30] Implicit Manifold Gaussian Process Regression
    Fichera, Bernardo
    Borovitskiy, Viacheslav
    Krause, Andreas
    Billard, Aude
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,