Gaussian Process Regression for Structured Data Sets

被引:14
|
作者
Belyaev, Mikhail [1 ,2 ,3 ]
Burnaev, Evgeny [1 ,2 ,3 ]
Kapushev, Yermek [1 ,2 ]
机构
[1] Inst Informat Transmiss Problems, Moscow 127994, Russia
[2] DATADVANCE Llc, Moscow 109028, Russia
[3] MIPT, PreMoLab, Dolgoprudnyi 141700, Russia
来源
关键词
Gaussian process; Structured data; Regularization;
D O I
10.1007/978-3-319-17091-6_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Approximation algorithms are widely used in many engineering problems. To obtain a data set for approximation a factorial design of experiments is often used. In such case the size of the data set can be very large. Therefore, one of the most popular algorithms for approximation - Gaussian Process regression - can hardly be applied due to its computational complexity. In this paper a new approach for a Gaussian Process regression in case of a factorial design of experiments is proposed. It allows to efficiently compute exact inference and handle large multidimensional and anisotropic data sets.
引用
收藏
页码:106 / 115
页数:10
相关论文
共 50 条
  • [21] Learning to Localize with Gaussian Process Regression on Omnidirectional Image Data
    Huhle, Benjamin
    Schairer, Timo
    Schilling, Andreas
    Strasser, Wolfgang
    IEEE/RSJ 2010 INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2010), 2010, : 5208 - 5213
  • [22] Gaussian process robust regression for noisy heart rate data
    Stegle, Oliver
    Fallert, Sebastian V.
    MacKay, David J. C.
    Brage, Soren
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2008, 55 (09) : 2143 - 2151
  • [23] Understanding and comparing scalable Gaussian process regression for big data
    Liu, Haitao
    Cai, Jianfei
    Ong, Yew-Soon
    Wang, Yi
    KNOWLEDGE-BASED SYSTEMS, 2019, 164 (324-335) : 324 - 335
  • [24] Revealing transient strain in geodetic data with Gaussian process regression
    Hines, T. T.
    Hetland, E. A.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2018, 212 (03) : 2116 - 2130
  • [25] AN ADDITIVE GLOBAL AND LOCAL GAUSSIAN PROCESS MODEL FOR LARGE DATA SETS
    Meng, Qun
    Ng, Szu Hui
    2015 WINTER SIMULATION CONFERENCE (WSC), 2015, : 505 - 516
  • [26] Neuronal Gaussian Process Regression
    Friedrich, Johannes
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [27] RECURSIVE GAUSSIAN PROCESS REGRESSION
    Huber, Marco F.
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 3362 - 3366
  • [28] A Gaussian process robust regression
    Murata, N
    Kuroda, Y
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2005, (157): : 280 - 283
  • [29] Bagging for Gaussian process regression
    Chen, Tao
    Ren, Jianghong
    NEUROCOMPUTING, 2009, 72 (7-9) : 1605 - 1610
  • [30] Overview of Gaussian process regression
    He, Zhi-Kun
    Liu, Guang-Bin
    Zhao, Xi-Jing
    Wang, Ming-Hao
    Kongzhi yu Juece/Control and Decision, 2013, 28 (08): : 1121 - 1129