Weakly Non-Ergodic Statistical Physics

被引:66
|
作者
Rebenshtok, A. [1 ]
Barkai, E. [1 ]
机构
[1] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
基金
以色列科学基金会;
关键词
Weak ergodicity breaking; Continuous time random walk; Fractional Fokker-Planck equation;
D O I
10.1007/s10955-008-9610-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For weakly non ergodic systems, the probability density function of a time average observable (O) over bar is f alpha((O) over bar) = 1/pi lim(epsilon -> 0) Im Sigma(L)(j=1) P-j(eq) ((O) over bar -O-j+i epsilon)(alpha-1)/Sigma(L)(j=1) P-j(eq)((O) over bar -O-j+i epsilon)(alpha) where O-j is the value of the observable when the system is in state j = 1,... L. p(j)(eq) j is the probability that a member of an ensemble of systems occupies state j in equilibrium. For a particle undergoing a fractional diffusion process in a binding force field, with thermal detailed balance conditions, p(j)(eq) is Boltzmann's canonical probability. Within the unbiased sub-diffusive continuous time random walk model, the exponent 0 < alpha < 1 is the anomalous diffusion exponent < x(2)> similar to t(alpha) found for free boundary conditions. When alpha -> 1 ergodic statistical mechanics is recovered lim(alpha -> 1) f(alpha)((O) over bar) = delta((O) over bar - < O >). We briefly discuss possible physical applications in single particle experiments.
引用
收藏
页码:565 / 586
页数:22
相关论文
共 50 条
  • [41] On Non-Ergodic Transformations on S3
    Ganikhodjaev, Nasir N.
    Jamilov, Uygun U.
    Mukhitdinov, Ramazon T.
    INTERNATIONAL CONFERENCE ON ADVANCEMENT IN SCIENCE AND TECHNOLOGY 2012 (ICAST): CONTEMPORARY MATHEMATICS, MATHEMATICAL PHYSICS AND THEIR APPLICATIONS, 2013, 435
  • [42] On Non-Ergodic Gaussian Quadratic Stochastic Operators
    Hamzah, Nur Zatul Akmar
    Ganikhodjaev, Nasir
    PROCEEDING OF THE 25TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM25): MATHEMATICAL SCIENCES AS THE CORE OF INTELLECTUAL EXCELLENCE, 2018, 1974
  • [43] CONVERGENCE OF NON-ERGODIC DYNAMICAL-SYSTEMS
    KALLENBERG, O
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1980, 53 (03): : 329 - 351
  • [44] Non-ergodic delocalization in the Rosenzweig–Porter model
    Per von Soosten
    Simone Warzel
    Letters in Mathematical Physics, 2019, 109 : 905 - 922
  • [45] NON-ERGODIC DISSOCIATION OF THE ACETONE ENOL ION
    MCADOO, DJ
    HUDSON, CE
    INTERNATIONAL JOURNAL OF MASS SPECTROMETRY AND ION PROCESSES, 1984, 59 (01): : 77 - 83
  • [46] Non-ergodic transport of kinetically sorbing solutes
    Fiori, A
    Bellin, A
    JOURNAL OF CONTAMINANT HYDROLOGY, 1999, 40 (03) : 201 - 219
  • [47] LYAPUNOV EXPONENTS FOR NON-ERGODIC MEROMORPHIC FUNCTIONS
    Kotus, Janina
    Balderas, Marco Montes De Oca
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, : 1609 - 1620
  • [48] STRICTLY NON-ERGODIC ACTIONS ON HOMOGENEOUS SPACES
    DANI, SG
    DUKE MATHEMATICAL JOURNAL, 1980, 47 (03) : 633 - 639
  • [49] Multirelay Channel with Non-Ergodic Link Failures
    Simeone, Osvaldo
    Somekh, Oren
    Erkip, Elza
    Poor, H. Vincent
    Shamai , Shlomo
    ITW: 2009 IEEE INFORMATION THEORY WORKSHOP ON NETWORKING AND INFORMATION THEORY, 2009, : 52 - +
  • [50] Ergodic to non-ergodic transition monitored by scattered light intensity statistics
    Manno, M
    Bulone, D
    Martorana, V
    San Biagio, PL
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 341 : 40 - 54