Weakly Non-Ergodic Statistical Physics

被引:66
|
作者
Rebenshtok, A. [1 ]
Barkai, E. [1 ]
机构
[1] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
基金
以色列科学基金会;
关键词
Weak ergodicity breaking; Continuous time random walk; Fractional Fokker-Planck equation;
D O I
10.1007/s10955-008-9610-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For weakly non ergodic systems, the probability density function of a time average observable (O) over bar is f alpha((O) over bar) = 1/pi lim(epsilon -> 0) Im Sigma(L)(j=1) P-j(eq) ((O) over bar -O-j+i epsilon)(alpha-1)/Sigma(L)(j=1) P-j(eq)((O) over bar -O-j+i epsilon)(alpha) where O-j is the value of the observable when the system is in state j = 1,... L. p(j)(eq) j is the probability that a member of an ensemble of systems occupies state j in equilibrium. For a particle undergoing a fractional diffusion process in a binding force field, with thermal detailed balance conditions, p(j)(eq) is Boltzmann's canonical probability. Within the unbiased sub-diffusive continuous time random walk model, the exponent 0 < alpha < 1 is the anomalous diffusion exponent < x(2)> similar to t(alpha) found for free boundary conditions. When alpha -> 1 ergodic statistical mechanics is recovered lim(alpha -> 1) f(alpha)((O) over bar) = delta((O) over bar - < O >). We briefly discuss possible physical applications in single particle experiments.
引用
收藏
页码:565 / 586
页数:22
相关论文
共 50 条
  • [31] Non-ergodic dynamics in supercooled liquids
    Dzugutov, M
    Simdyankin, S
    Zetterling, F
    PHASE TRANSITIONS AND SELF-ORGANIZATION IN ELECTRONIC AND MOLECULAR NETWORKS, 2001, : 111 - 122
  • [32] Non-ergodic maps in the tangent family
    Skorulski, B
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2003, 14 (01): : 103 - 118
  • [33] Non-ergodic dynamics of an electron glass
    Pollak, M
    Ovadyahu, Z
    JOURNAL DE PHYSIQUE I, 1997, 7 (12): : 1595 - 1602
  • [34] Ergodic and non-ergodic anomalous diffusion in coupled stochastic processes
    Bel, Golan
    Nemenman, Ilya
    NEW JOURNAL OF PHYSICS, 2009, 11
  • [35] Ergodic and non-ergodic phase transitions in globular protein suspensions
    Kulkarni, AM
    Dixit, NM
    Zukoski, CF
    FARADAY DISCUSSIONS, 2003, 123 : 37 - 50
  • [36] Ergodic observables in non-ergodic systems: The example of the harmonic chain
    Baldovin, Marco
    Marino, Raffaele
    Vulpiani, Angelo
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 630
  • [37] Ergodic and non-ergodic regimes in temporal laser speckle imaging
    Zakharov, Pavel
    OPTICS LETTERS, 2017, 42 (12) : 2299 - 2301
  • [38] Statistical analysis of the non-ergodic fractional Ornstein-Uhlenbeck process with periodic mean
    Belfadli, Rachid
    Es-Sebaiy, Khalifa
    Farah, Fatima-Ezzahra
    METRIKA, 2022, 85 (07) : 885 - 911
  • [39] Non-thermodynamic behavior for non-ergodic interactions
    Gaveau, B.
    Schulman, L. S.
    SECOND LAW OF THERMODYNAMICS: STATUS AND CHALLENGES, 2011, 1411
  • [40] NON-ERGODIC BANACH SPACES ARE NEAR HILBERT
    Cuellar Carrera, W.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (12) : 8691 - 8707