Weakly Non-Ergodic Statistical Physics

被引:66
|
作者
Rebenshtok, A. [1 ]
Barkai, E. [1 ]
机构
[1] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
基金
以色列科学基金会;
关键词
Weak ergodicity breaking; Continuous time random walk; Fractional Fokker-Planck equation;
D O I
10.1007/s10955-008-9610-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For weakly non ergodic systems, the probability density function of a time average observable (O) over bar is f alpha((O) over bar) = 1/pi lim(epsilon -> 0) Im Sigma(L)(j=1) P-j(eq) ((O) over bar -O-j+i epsilon)(alpha-1)/Sigma(L)(j=1) P-j(eq)((O) over bar -O-j+i epsilon)(alpha) where O-j is the value of the observable when the system is in state j = 1,... L. p(j)(eq) j is the probability that a member of an ensemble of systems occupies state j in equilibrium. For a particle undergoing a fractional diffusion process in a binding force field, with thermal detailed balance conditions, p(j)(eq) is Boltzmann's canonical probability. Within the unbiased sub-diffusive continuous time random walk model, the exponent 0 < alpha < 1 is the anomalous diffusion exponent < x(2)> similar to t(alpha) found for free boundary conditions. When alpha -> 1 ergodic statistical mechanics is recovered lim(alpha -> 1) f(alpha)((O) over bar) = delta((O) over bar - < O >). We briefly discuss possible physical applications in single particle experiments.
引用
收藏
页码:565 / 586
页数:22
相关论文
共 50 条
  • [21] Generation and application of non-ergodic noise
    Liu Yan
    Bao Jing-Dong
    ACTA PHYSICA SINICA, 2014, 63 (24)
  • [22] On the static mechanics of non-ergodic systems
    Jaffe, G
    ANNALEN DER PHYSIK, 1925, 76 (07) : 680 - 708
  • [23] CALCULATIONS ON A MODEL OF A NON-ERGODIC SYSTEM
    HULL, HH
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1973, : 93 - &
  • [24] OPTIMIZING NON-ERGODIC FEEDBACK ENGINES
    Horowitz, Jordan M.
    Parrondo, Juan M. R.
    ACTA PHYSICA POLONICA B, 2013, 44 (05): : 803 - 814
  • [25] The Non-Ergodic Nature of Political Philosophy
    Cubeddu, Raimondo
    TEORIA-RIVISTA DI FILOSOFIA, 2014, 34 (02): : 7 - 26
  • [26] Rapid solidification as non-ergodic phenomenon
    Galenko, P. K.
    Jou, D.
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2019, 818 : 1 - 70
  • [27] ON ASYMPTOTIC EXPANSIONS IN NON-ERGODIC MODELS
    JENSEN, JL
    SCANDINAVIAN JOURNAL OF STATISTICS, 1987, 14 (04) : 305 - 318
  • [28] The Non-Ergodic Nature of Internal Conversion
    Solling, Theis I.
    Kuhlman, Thomas S.
    Stephansen, Anne B.
    Klein, Liv B.
    Moller, Klaus B.
    CHEMPHYSCHEM, 2014, 15 (02) : 249 - 259
  • [29] NON-ERGODIC TRANSFORMATIONS WITH DISCRETE SPECTRUM
    CHOKSI, JR
    ILLINOIS JOURNAL OF MATHEMATICS, 1965, 9 (02) : 307 - &
  • [30] ON NON-ERGODIC PHASES IN MINORITY GAMES
    De Martino, Andrea
    Galla, Tobias
    NEW MATHEMATICS AND NATURAL COMPUTATION, 2011, 7 (02) : 249 - 265