LYAPUNOV EXPONENTS FOR NON-ERGODIC MEROMORPHIC FUNCTIONS

被引:0
|
作者
Kotus, Janina [1 ]
Balderas, Marco Montes De Oca [2 ]
机构
[1] Warsaw Univ Technol, Fac Math & Informat Sci, Ul Koszykowa 75, PL-00662 Warsaw, Poland
[2] Univ Nacl Autonoma Mexico, Fac Ciencias, Ave Univ 3000,Circuito Exterior S-N,Ciudad Univ, Ciudad de Mexico 04510, Mexico
关键词
Transcendental meromorphic functions; Julia set; Lyapunov exponents;
D O I
10.1090/proc/16256
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Levin, Przytycki and Shen [Invent. Math. 205 (2016), pp. 363- 382] proved for a polynomial map fc(z) = zd + c, d >= 2 and c is an element of C, with Julia set J(f) of positive measure that for a.e. z is an element of J(f) the Lyapunov exponent chi s(z) = 0. The aim of this paper is to show that the extension to non-entire transcendental meromorphic functions is not possible.
引用
收藏
页码:1609 / 1620
页数:12
相关论文
共 50 条
  • [1] Lyapunov exponents of meromorphic applications
    de Thelin, Henry
    [J]. INVENTIONES MATHEMATICAE, 2008, 172 (01) : 89 - 116
  • [2] Ergodic Property of Lyapunov Exponents
    Qian, Min
    Xie, Jian-Sheng
    Zhu, Shu
    [J]. SMOOTH ERGODIC THEORY FOR ENDOMORPHISMS, 2009, 1978 : 151 - 171
  • [3] Non-ergodic martingale estimating functions and related asymptotics
    Hwang, S. Y.
    Basawa, I. V.
    Choi, M. S.
    Lee, S. D.
    [J]. STATISTICS, 2014, 48 (03) : 487 - 507
  • [4] On controllability of ergodic system Lyapunov exponents
    Zaitsev, VA
    [J]. NONSMOOTH AND DISCONTINUOUS PROBLEMS OF CONTROL AND OPTIMIZATION (NDPCO'98), 1999, : 223 - 226
  • [5] On ergodic measures with negative Lyapunov exponents
    Barragan, Andres Mauricio
    Morales, Carlos Arnoldo
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2016, 92 (10) : 131 - 135
  • [6] Some characterizations of non-ergodic estimating functions for stochastic processes
    Hwang, S. Y.
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2015, 44 (04) : 661 - 667
  • [7] Some characterizations of non-ergodic estimating functions for stochastic processes
    S. Y. Hwang
    [J]. Journal of the Korean Statistical Society, 2015, 44 : 661 - 667
  • [8] Ergodic descriptors of non-ergodic stochastic processes
    Mangalam, Madhur
    Kelty-Stephen, Damian G.
    [J]. JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2022, 19 (189)
  • [9] Ergodic and non-ergodic clustering of inertial particles
    Gustavsson, K.
    Mehlig, B.
    [J]. EPL, 2011, 96 (06)
  • [10] On non-ergodic asset prices
    Horst, Ulrich
    Wenzelburger, Jan
    [J]. ECONOMIC THEORY, 2008, 34 (02) : 207 - 234