LYAPUNOV EXPONENTS FOR NON-ERGODIC MEROMORPHIC FUNCTIONS

被引:0
|
作者
Kotus, Janina [1 ]
Balderas, Marco Montes De Oca [2 ]
机构
[1] Warsaw Univ Technol, Fac Math & Informat Sci, Ul Koszykowa 75, PL-00662 Warsaw, Poland
[2] Univ Nacl Autonoma Mexico, Fac Ciencias, Ave Univ 3000,Circuito Exterior S-N,Ciudad Univ, Ciudad de Mexico 04510, Mexico
关键词
Transcendental meromorphic functions; Julia set; Lyapunov exponents;
D O I
10.1090/proc/16256
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Levin, Przytycki and Shen [Invent. Math. 205 (2016), pp. 363- 382] proved for a polynomial map fc(z) = zd + c, d >= 2 and c is an element of C, with Julia set J(f) of positive measure that for a.e. z is an element of J(f) the Lyapunov exponent chi s(z) = 0. The aim of this paper is to show that the extension to non-entire transcendental meromorphic functions is not possible.
引用
收藏
页码:1609 / 1620
页数:12
相关论文
共 50 条
  • [31] Weakly Non-Ergodic Statistical Physics
    A. Rebenshtok
    E. Barkai
    [J]. Journal of Statistical Physics, 2008, 133 : 565 - 586
  • [32] ON NON-ERGODIC PHASES IN MINORITY GAMES
    De Martino, Andrea
    Galla, Tobias
    [J]. NEW MATHEMATICS AND NATURAL COMPUTATION, 2011, 7 (02) : 249 - 265
  • [33] Non-ergodic maps in the tangent family
    Skorulski, B
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2003, 14 (01): : 103 - 118
  • [34] LYAPUNOV EXPONENTS AS FUNCTIONS OF A PARAMETER
    MILLIONSHCHIKOV, VM
    [J]. MATHEMATICS OF THE USSR-SBORNIK, 1988, 137 (3-4): : 369 - 384
  • [35] Ergodic and non-ergodic anomalous diffusion in coupled stochastic processes
    Bel, Golan
    Nemenman, Ilya
    [J]. NEW JOURNAL OF PHYSICS, 2009, 11
  • [36] Non-ergodic dynamics of an electron glass
    Pollak, M
    Ovadyahu, Z
    [J]. JOURNAL DE PHYSIQUE I, 1997, 7 (12): : 1595 - 1602
  • [37] Weakly Non-Ergodic Statistical Physics
    Rebenshtok, A.
    Barkai, E.
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2008, 133 (03) : 565 - 586
  • [38] Ergodic and non-ergodic phase transitions in globular protein suspensions
    Kulkarni, AM
    Dixit, NM
    Zukoski, CF
    [J]. FARADAY DISCUSSIONS, 2003, 123 : 37 - 50
  • [39] Ergodic observables in non-ergodic systems: The example of the harmonic chain
    Baldovin, Marco
    Marino, Raffaele
    Vulpiani, Angelo
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 630
  • [40] Ergodic and non-ergodic regimes in temporal laser speckle imaging
    Zakharov, Pavel
    [J]. OPTICS LETTERS, 2017, 42 (12) : 2299 - 2301