Weakly Non-Ergodic Statistical Physics

被引:65
|
作者
Rebenshtok, A. [1 ]
Barkai, E. [1 ]
机构
[1] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
基金
以色列科学基金会;
关键词
Weak ergodicity breaking; Continuous time random walk; Fractional Fokker-Planck equation;
D O I
10.1007/s10955-008-9610-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For weakly non ergodic systems, the probability density function of a time average observable (O) over bar is f alpha((O) over bar) = 1/pi lim(epsilon -> 0) Im Sigma(L)(j=1) P-j(eq) ((O) over bar -O-j+i epsilon)(alpha-1)/Sigma(L)(j=1) P-j(eq)((O) over bar -O-j+i epsilon)(alpha) where O-j is the value of the observable when the system is in state j = 1,... L. p(j)(eq) j is the probability that a member of an ensemble of systems occupies state j in equilibrium. For a particle undergoing a fractional diffusion process in a binding force field, with thermal detailed balance conditions, p(j)(eq) is Boltzmann's canonical probability. Within the unbiased sub-diffusive continuous time random walk model, the exponent 0 < alpha < 1 is the anomalous diffusion exponent < x(2)> similar to t(alpha) found for free boundary conditions. When alpha -> 1 ergodic statistical mechanics is recovered lim(alpha -> 1) f(alpha)((O) over bar) = delta((O) over bar - < O >). We briefly discuss possible physical applications in single particle experiments.
引用
收藏
页码:565 / 586
页数:22
相关论文
共 50 条
  • [1] Weakly Non-Ergodic Statistical Physics
    A. Rebenshtok
    E. Barkai
    Journal of Statistical Physics, 2008, 133 : 565 - 586
  • [2] A statistical evaluation of non-ergodic variogram estimators
    Curriero, FC
    Hohn, ME
    Liebhold, AM
    Lele, SR
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2002, 9 (01) : 89 - 110
  • [3] A statistical evaluation of non-ergodic variogram estimators
    Frank C. Curriero
    Michael E. Hohn
    Andrew M. Liebhold
    Subhash R. Lele
    Environmental and Ecological Statistics, 2002, 9 : 89 - 110
  • [4] Weakly driven anomalous diffusion in non-ergodic regime: an analytical solution
    Mauro Bologna
    Gerardo Aquino
    The European Physical Journal B, 2014, 87
  • [5] Weakly driven anomalous diffusion in non-ergodic regime: an analytical solution
    Bologna, Mauro
    Aquino, Gerardo
    EUROPEAN PHYSICAL JOURNAL B, 2014, 87 (01):
  • [6] Ergodic descriptors of non-ergodic stochastic processes
    Mangalam, Madhur
    Kelty-Stephen, Damian G.
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2022, 19 (189)
  • [7] Ergodic and non-ergodic clustering of inertial particles
    Gustavsson, K.
    Mehlig, B.
    EPL, 2011, 96 (06)
  • [8] On non-ergodic asset prices
    Horst, Ulrich
    Wenzelburger, Jan
    ECONOMIC THEORY, 2008, 34 (02) : 207 - 234
  • [9] Non-ergodic laser cooling
    Cohen-Tannoudji, C
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 355 (1733): : 2219 - 2221
  • [10] A STATISTICAL-THEORY OF RATE CONSTANTS IN NON-ERGODIC SYSTEMS - COMMENT
    DELEON, N
    BERNE, BJ
    JOURNAL OF CHEMICAL PHYSICS, 1982, 76 (10): : 5187 - 5188