Influence of uncompensated electrostatic force on height measurements in non-contact atomic force microscopy

被引:28
|
作者
Sadewasser, S [1 ]
Carl, P [1 ]
Glatzel, T [1 ]
Lux-Steiner, MC [1 ]
机构
[1] Hahn Meitner Inst Berlin GmbH, D-14109 Berlin, Germany
关键词
D O I
10.1088/0957-4484/15/2/004
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We use highly oriented pyrolytic graphite (HOPG) with a submonolayer coverage of C-60 and monitor the step height from C-60 to HOPG as a function of dc bias for non-contact atomic force microscopy (NC-AFM). We find a strong dependence of the step height on dc bias between tip and sample surface. The step height is modified by uncompensated electrostatic forces, resulting from the work function difference of similar to50 meV between C-60 and HOPG, as determined by Kelvin probe force microscopy (KPFM) measurements. In comparison, steps from C-60 to C-60 or from HOPG to HOPG show no dependence on dc bias. This effect is well described by simulations of the electrostatic interaction between tip and sample. The results clearly demonstrate the influence of uncompensated electrostatic forces on height measurements in NC-AFM, and show that correct height determination requires the use of KPFM with active control of the bias voltage.
引用
收藏
页码:S14 / S18
页数:5
相关论文
共 50 条
  • [31] Thermal noise response based static non-contact atomic force microscopy
    Gannepalli, A
    Sebastian, A
    Salapaka, MV
    Cleveland, JP
    [J]. NSTI NANOTECH 2004, VOL 3, TECHNICAL PROCEEDINGS, 2004, : 159 - 162
  • [32] Adaptive semi-empirical model for non-contact atomic force microscopy
    陈曦
    童君开
    胡智鑫
    [J]. Chinese Physics B, 2022, (08) : 748 - 753
  • [33] Adaptive semi-empirical model for non-contact atomic force microscopy
    Chen, Xi
    Tong, Jun-Kai
    Hu, Zhi-Xin
    [J]. CHINESE PHYSICS B, 2022, 31 (08)
  • [34] Molecular structure of heavy oil revealed with non-contact atomic force microscopy
    Zhang, Yunlong
    Harper, Michael
    Kushnerick, Douglas
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [35] Observation of voltage contrast in non-contact resonant mode atomic force microscopy
    Girard, P
    Solal, GC
    Belaidi, S
    [J]. MICROELECTRONIC ENGINEERING, 1996, 31 (1-4) : 215 - 225
  • [36] Imaging in situ cleaved MgO(100) with non-contact atomic force microscopy
    Ashworth, TV
    Pang, CL
    Wincott, PL
    Vaughan, DJ
    Thornton, G
    [J]. APPLIED SURFACE SCIENCE, 2003, 210 (1-2) : 2 - 5
  • [37] Frequency shift and energy dissipation in non-contact atomic-force microscopy
    Ke, SH
    Uda, T
    Terakura, K
    [J]. APPLIED SURFACE SCIENCE, 2000, 157 (04) : 361 - 366
  • [38] Imaging of Defects on Ge(001):H by Non-contact Atomic Force Microscopy
    Such, Bartosz
    Kolmer, Marek
    Godlewski, Szymon
    Lis, Jakub
    Budzioch, Janusz
    Wojtaszek, Mateusz
    Szymonski, Marek
    [J]. IMAGING AND MANIPULATION OF ADSORBATES USING DYNAMIC FORCE MICROSCOPY, 2015, : 111 - 118
  • [39] Acquisition of high-precision images for non-contact atomic force microscopy
    Pishkenari, Hossein Nejat
    Jalili, Nader
    Meghdari, Ali
    [J]. MECHATRONICS, 2006, 16 (10) : 655 - 664
  • [40] Controlled deposition of gold nanodots using non-contact atomic force microscopy
    Pumarol, ME
    Miyahara, Y
    Gagnon, R
    Grütter, P
    [J]. NANOTECHNOLOGY, 2005, 16 (08) : 1083 - 1088