Influence of uncompensated electrostatic force on height measurements in non-contact atomic force microscopy

被引:28
|
作者
Sadewasser, S [1 ]
Carl, P [1 ]
Glatzel, T [1 ]
Lux-Steiner, MC [1 ]
机构
[1] Hahn Meitner Inst Berlin GmbH, D-14109 Berlin, Germany
关键词
D O I
10.1088/0957-4484/15/2/004
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We use highly oriented pyrolytic graphite (HOPG) with a submonolayer coverage of C-60 and monitor the step height from C-60 to HOPG as a function of dc bias for non-contact atomic force microscopy (NC-AFM). We find a strong dependence of the step height on dc bias between tip and sample surface. The step height is modified by uncompensated electrostatic forces, resulting from the work function difference of similar to50 meV between C-60 and HOPG, as determined by Kelvin probe force microscopy (KPFM) measurements. In comparison, steps from C-60 to C-60 or from HOPG to HOPG show no dependence on dc bias. This effect is well described by simulations of the electrostatic interaction between tip and sample. The results clearly demonstrate the influence of uncompensated electrostatic forces on height measurements in NC-AFM, and show that correct height determination requires the use of KPFM with active control of the bias voltage.
引用
收藏
页码:S14 / S18
页数:5
相关论文
共 50 条
  • [41] Acquisition of high-precision images for non-contact atomic force microscopy
    Pishkenari, Hossein Nejat
    Jalili, Nader
    Meghdari, Ali
    [J]. MECHATRONICS, 2006, 16 (10) : 655 - 664
  • [42] Imaging of Defects on Ge(001):H by Non-contact Atomic Force Microscopy
    Such, Bartosz
    Kolmer, Marek
    Godlewski, Szymon
    Lis, Jakub
    Budzioch, Janusz
    Wojtaszek, Mateusz
    Szymonski, Marek
    [J]. IMAGING AND MANIPULATION OF ADSORBATES USING DYNAMIC FORCE MICROSCOPY, 2015, : 111 - 118
  • [43] Energy Dissipation Mechanism of Non-Contact Atomic Force Microscopy for Movable Objects
    Harada, Masanori
    Tsukada, Masaru
    [J]. E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY, 2008, 6 : 1 - 6
  • [44] Controlled deposition of gold nanodots using non-contact atomic force microscopy
    Pumarol, ME
    Miyahara, Y
    Gagnon, R
    Grütter, P
    [J]. NANOTECHNOLOGY, 2005, 16 (08) : 1083 - 1088
  • [45] Studies to identify heteroatoms in aromatic molecules with non-contact atomic force microscopy
    Zhang, Yunlong
    Zahl, Percy
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [46] Non-Contact Atomic Force Microscopy and Scanning Tunneling Microscopy of Coexisting Reconstructions on Si(111)
    Rose, Franck
    Ishii, Takanori
    Kawai, Shigeki
    Kawakatsu, Hideki
    [J]. E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY, 2005, 3 : 258 - 262
  • [47] Influence of pixelization on height measurement in atomic force microscopy
    Tolstova, Anna P.
    Dubrovin, Evgeniy V.
    [J]. ULTRAMICROSCOPY, 2019, 207
  • [48] Local permittivity measurement of dielectric materials based on the non-contact force curve of microwave atomic force microscopy
    Tong, Bo
    Zhao, Minji
    Toku, Yuhki
    Morita, Yasuyuki
    Ju, Yang
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2019, 90 (03):
  • [49] Sub-Angstrom oscillation amplitude non-contact atomic force microscopy for lateral force gradient measurement
    Atabak, Mehrdad
    Unverdi, Ozhan
    Ozer, H. Ozgur
    Oral, Ahmet
    [J]. APPLIED SURFACE SCIENCE, 2009, 256 (05) : 1299 - 1303
  • [50] MODELING AND SIMULATION OF NON-CONTACT ATOMIC FORCE MICROSCOPE
    Bahrami, Mohammadreza
    Ramezani, Asghar
    Osquie, Kambiz Ghaemi
    [J]. PROCEEDINGS OF THE ASME 10TH BIENNIAL CONFERENCE ON ENGINEERING SYSTEMS DESIGN AND ANALYSIS, 2010, VOL 5, 2010, : 565 - 569