Linear Shafarevich conjecture

被引:18
|
作者
Eyssidieux, P. [1 ]
Katzarkov, L. [2 ,3 ]
Pantev, T. [4 ]
Ramachandran, M. [5 ]
机构
[1] Univ Grenoble 1, Inst Univ France, Inst Fourier, Grenoble, France
[2] Univ Vienna, Vienna, Austria
[3] Univ Miami, Miami, FL USA
[4] Univ Penn, Philadelphia, PA 19104 USA
[5] SUNY Buffalo, Buffalo, NY 14260 USA
基金
美国国家科学基金会; 奥地利科学基金会;
关键词
UNIVERSAL COVERINGS; VECTOR-BUNDLES; REPRESENTATIONS; CONVEXITY; SPACES; MODULI; MAPS;
D O I
10.4007/annals.2012.176.3.4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we settle affirmatively Shafarevich's uniformization conjecture for varieties with linear fundamental groups. We prove the strongest to date uniformization result - the universal covering space of a complex projective manifold with a linear fundamental group is holomorphically convex. The proof is based on both known and newly developed techniques in non-abelian Hodge theory.
引用
收藏
页码:1545 / 1581
页数:37
相关论文
共 50 条
  • [1] Linear representations of kaehler groups: factorizations and linear Shafarevich conjecture
    Campana, Frederic
    Claudon, Benoit
    Eyssidieux, Philippe
    COMPOSITIO MATHEMATICA, 2015, 151 (02) : 351 - 376
  • [2] On the Shafarevich conjecture for Enriques surfaces
    Teppei Takamatsu
    Mathematische Zeitschrift, 2021, 298 : 489 - 495
  • [3] On the Shafarevich conjecture for Enriques surfaces
    Takamatsu, Teppei
    MATHEMATISCHE ZEITSCHRIFT, 2021, 298 (1-2) : 489 - 495
  • [4] THE SHAFAREVICH CONJECTURE FOR BODIES OF FUNCTIONS ON Q
    MARTINDESCHAMPS, M
    ASTERISQUE, 1985, (127) : 256 - 259
  • [5] Siegel's theorem and the Shafarevich conjecture
    Levin, Aaron
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2012, 24 (03): : 705 - 727
  • [6] An effective proof of the hyperelliptic Shafarevich conjecture
    Von Kanel, Rafael
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2014, 26 (02): : 507 - 530
  • [7] A semi-stable case of the Shafarevich Conjecture
    Abrashkin, Victor
    AUTOMORPHIC FORMS AND GALOIS REPRESENTATIONS, VOL 1, 2014, 414 : 1 - 31
  • [8] On the Shafarevich conjecture for genus-2 fibrations
    Gurjar, R. V.
    Purnaprajna, B. P.
    MATHEMATISCHE ANNALEN, 2009, 343 (04) : 791 - 800
  • [9] Shafarevich's Conjecture for CY Manifolds I
    Liu, Kefeng
    Todorov, Andrey
    Yau, Shing-Tung
    Zuo, Kang
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2005, 1 (01) : 28 - 67
  • [10] On the Shafarevich conjecture for genus-2 fibrations
    R. V. Gurjar
    B. P. Purnaprajna
    Mathematische Annalen, 2009, 343 : 791 - 800