Linear Shafarevich conjecture

被引:18
|
作者
Eyssidieux, P. [1 ]
Katzarkov, L. [2 ,3 ]
Pantev, T. [4 ]
Ramachandran, M. [5 ]
机构
[1] Univ Grenoble 1, Inst Univ France, Inst Fourier, Grenoble, France
[2] Univ Vienna, Vienna, Austria
[3] Univ Miami, Miami, FL USA
[4] Univ Penn, Philadelphia, PA 19104 USA
[5] SUNY Buffalo, Buffalo, NY 14260 USA
基金
美国国家科学基金会; 奥地利科学基金会;
关键词
UNIVERSAL COVERINGS; VECTOR-BUNDLES; REPRESENTATIONS; CONVEXITY; SPACES; MODULI; MAPS;
D O I
10.4007/annals.2012.176.3.4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we settle affirmatively Shafarevich's uniformization conjecture for varieties with linear fundamental groups. We prove the strongest to date uniformization result - the universal covering space of a complex projective manifold with a linear fundamental group is holomorphically convex. The proof is based on both known and newly developed techniques in non-abelian Hodge theory.
引用
收藏
页码:1545 / 1581
页数:37
相关论文
共 50 条
  • [31] On a conjecture on linear systems
    Anand, Sonica
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2017, 127 (03): : 431 - 448
  • [32] Uniformly effective Shafarevich Conjecture on families of hyperbolic curves over a curve with prescribed degeneracy locus
    Heier, G
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (07): : 845 - 867
  • [33] POSITIVITY OF THE LOGARITHMIC COTANGENT AND CONJECTURE OF SHAFAREVICH-VIEHWEG [according to Campana, Faun, Taji, etc.]
    Claudon, Benoit
    ASTERISQUE, 2017, (390) : 27 - 63
  • [34] Linear Programs for the Kepler Conjecture
    Hales, Thomas C.
    MATHEMATICAL SOFTWARE - ICMS 2010, 2010, 6327 : 149 - 151
  • [35] Linear balls and the multiplicity conjecture
    Hibi, Takayuki
    Singla, Pooja
    JOURNAL OF ALGEBRA, 2008, 319 (10) : 4372 - 4390
  • [36] Linear congruences and a conjecture of Bibak
    Babu, Chinnakonda Gnanamoorthy Karthick
    Bera, Ranjan
    Sury, Balasubramanian
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2024, 74 (04) : 1185 - 1206
  • [37] A Planar Linear Arboricity Conjecture
    Cygan, Marek
    Kowalik, Lukasz
    Luzar, Borut
    ALGORITHMS AND COMPLEXITY, PROCEEDINGS, 2010, 6078 : 204 - +
  • [38] A Planar linear arboricity conjecture
    Cygan, Marek
    Hou, Jian-Feng
    Kowalik, Lukasz
    Luzar, Borut
    Wu, Jian-Liang
    JOURNAL OF GRAPH THEORY, 2012, 69 (04) : 403 - 425
  • [39] The Novikov conjecture for linear groups
    Guentner, E
    Higson, N
    Weinberger, S
    PUBLICATIONS MATHEMATIQUES DE L'IHES, NO 101, 2005, 101 (101): : 243 - 268
  • [40] Towards the linear arboricity conjecture
    Ferber, Asaf
    Fox, Jacob
    Jain, Vishesh
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2020, 142 : 56 - 79