Linear Shafarevich conjecture

被引:18
|
作者
Eyssidieux, P. [1 ]
Katzarkov, L. [2 ,3 ]
Pantev, T. [4 ]
Ramachandran, M. [5 ]
机构
[1] Univ Grenoble 1, Inst Univ France, Inst Fourier, Grenoble, France
[2] Univ Vienna, Vienna, Austria
[3] Univ Miami, Miami, FL USA
[4] Univ Penn, Philadelphia, PA 19104 USA
[5] SUNY Buffalo, Buffalo, NY 14260 USA
基金
美国国家科学基金会; 奥地利科学基金会;
关键词
UNIVERSAL COVERINGS; VECTOR-BUNDLES; REPRESENTATIONS; CONVEXITY; SPACES; MODULI; MAPS;
D O I
10.4007/annals.2012.176.3.4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we settle affirmatively Shafarevich's uniformization conjecture for varieties with linear fundamental groups. We prove the strongest to date uniformization result - the universal covering space of a complex projective manifold with a linear fundamental group is holomorphically convex. The proof is based on both known and newly developed techniques in non-abelian Hodge theory.
引用
收藏
页码:1545 / 1581
页数:37
相关论文
共 50 条
  • [41] The Novikov Conjecture for Linear Groups
    Erik Guentner
    Nigel Higson
    Shmuel Weinberger
    Publications mathématiques de l'IHÉS, 2005, 101 : 243 - 268
  • [42] DEFENDING SHAFAREVICH
    DEMUSHKIN, SP
    MATHEMATICAL INTELLIGENCER, 1993, 15 (01): : 3 - 3
  • [43] SHAFAREVICH FUROR
    HARRIS, M
    MATHEMATICAL INTELLIGENCER, 1993, 15 (01): : 4 - 4
  • [44] CRITICISMS OF SHAFAREVICH
    DAVIS, C
    MATHEMATICAL INTELLIGENCER, 1993, 15 (01): : 3 - 3
  • [45] Explicit Heegner points: Kolyvagin's conjecture and non-trivial elements in the Shafarevich-Tate group
    Jetchev, Dimitar
    Lauter, Kristin
    Stein, William
    JOURNAL OF NUMBER THEORY, 2009, 129 (02) : 284 - 302
  • [46] MUMFORDS CONJECTURE FOR GENERAL LINEAR GROUP
    FORMANEK, E
    PROCESI, C
    ADVANCES IN MATHEMATICS, 1976, 19 (03) : 292 - 305
  • [47] A Linear Bound towards the Traceability Conjecture
    van Aardt, Susan A.
    Dunbar, Jean E.
    Frick, Marietjie
    Lichiardopol, Nicolas
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (04):
  • [48] A Partial Solution to Linear Congruence Conjecture
    Hegde, S. M.
    Murthy, T. Srinivasa
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2016, 39 (06): : 451 - 453
  • [49] A Partial Solution to Linear Congruence Conjecture
    S. M. Hegde
    T. Srinivasa Murthy
    National Academy Science Letters, 2016, 39 : 451 - 453
  • [50] A linear algebra approach to the conjecture of Collatz
    Alves, JF
    Graça, MM
    Dias, MES
    Ramos, JS
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 394 : 277 - 289