A linear ball is a simplicial complex whose geometric realization is homeomorphic to a ball and whose Stanley-Reisner ring has a linear resolution. It turns out that the Stanley-Reisner ring of the sphere which is the boundary complex of a linear ball satisfies the multiplicity conjecture. A class of shellable spheres arising naturally from commutative algebra whose Stanley-Reisner rings satisfy the multiplicity conjecture will be presented. (C) 2008 Elsevier Inc. All rights reserved.
机构:
RAS, Steklov Inst Math, St Petersburg Dept, Fontanka 27, St Petersburg 191023, Russia
St Petersburg State Univ, Univ emb 7 9, St Petersburg 199034, RussiaRAS, Steklov Inst Math, St Petersburg Dept, Fontanka 27, St Petersburg 191023, Russia
Filonov, Nikolay
Levitin, Michael
论文数: 0引用数: 0
h-index: 0
机构:
Univ Reading, Dept Math & Stat, Pepper Lane Whiteknights, Reading RG6 6AX, EnglandRAS, Steklov Inst Math, St Petersburg Dept, Fontanka 27, St Petersburg 191023, Russia
Levitin, Michael
Polterovich, Iosif
论文数: 0引用数: 0
h-index: 0
机构:
Univ Montreal, Dept Math & Stat, CP 6128 succ Ctr Ville, Montreal, PQ H3C 3J7, CanadaRAS, Steklov Inst Math, St Petersburg Dept, Fontanka 27, St Petersburg 191023, Russia
Polterovich, Iosif
Sher, David A.
论文数: 0引用数: 0
h-index: 0
机构:
DePaul Univ, Dept Math Sci, 2320 N Kenmore Ave, Chicago, IL 60614 USARAS, Steklov Inst Math, St Petersburg Dept, Fontanka 27, St Petersburg 191023, Russia