Linear balls and the multiplicity conjecture

被引:2
|
作者
Hibi, Takayuki [2 ]
Singla, Pooja [1 ]
机构
[1] Univ Duisburg Essen, FB Math, D-45117 Essen, Germany
[2] Osaka Univ, Grad Sch Informat Sci & Technol, Dept Pure & Appl Math, Osaka 5600043, Japan
关键词
combinatorial commutative algebra;
D O I
10.1016/j.jalgebra.2008.01.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A linear ball is a simplicial complex whose geometric realization is homeomorphic to a ball and whose Stanley-Reisner ring has a linear resolution. It turns out that the Stanley-Reisner ring of the sphere which is the boundary complex of a linear ball satisfies the multiplicity conjecture. A class of shellable spheres arising naturally from commutative algebra whose Stanley-Reisner rings satisfy the multiplicity conjecture will be presented. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:4372 / 4390
页数:19
相关论文
共 50 条
  • [1] On the multiplicity conjecture
    Miro-Roig, Rosa M.
    ALGEBRA, GEOMETRY AND THEIR INTERACTIONS, 2007, 448 : 207 - 214
  • [2] Extensions of the multiplicity conjecture
    Migliore, Juan
    Nagel, Uwe
    Roemer, Tim
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (06) : 2965 - 2985
  • [3] Notes on the multiplicity conjecture
    Herzog, J
    Zheng, XX
    COLLECTANEA MATHEMATICA, 2006, 57 (02) : 211 - 226
  • [4] The Multiplicity Conjecture for Barycentric Subdivisions
    Kubitzke, Martina
    Welker, Volkmar
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (11) : 4223 - 4248
  • [5] A note on the Zariski multiplicity conjecture
    Teymuri Garakani, Mandi
    COMPTES RENDUS MATHEMATIQUE, 2014, 352 (09) : 725 - 729
  • [6] On the upper bound of the multiplicity conjecture
    Puthenpurakal, Tony J.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (10) : 3429 - 3434
  • [7] Multiplicity results for semipositone problems on balls
    Robinson, SB
    Rudd, M
    DYNAMIC SYSTEMS AND APPLICATIONS, 2006, 15 (01): : 133 - 146
  • [8] The multiplicity conjecture in low codimensions
    Migliore, J
    Nagel, U
    Römer, T
    MATHEMATICAL RESEARCH LETTERS, 2005, 12 (5-6) : 731 - 747
  • [9] The union of uniform closed balls conjecture
    Nour, Chadi
    Stern, Ronald J.
    Takche, Jean
    CONTROL AND CYBERNETICS, 2009, 38 (04): : 1525 - 1534
  • [10] Polya's conjecture for Euclidean balls
    Filonov, Nikolay
    Levitin, Michael
    Polterovich, Iosif
    Sher, David A.
    INVENTIONES MATHEMATICAE, 2023, 234 (01) : 129 - 169