Linear balls and the multiplicity conjecture

被引:2
|
作者
Hibi, Takayuki [2 ]
Singla, Pooja [1 ]
机构
[1] Univ Duisburg Essen, FB Math, D-45117 Essen, Germany
[2] Osaka Univ, Grad Sch Informat Sci & Technol, Dept Pure & Appl Math, Osaka 5600043, Japan
关键词
combinatorial commutative algebra;
D O I
10.1016/j.jalgebra.2008.01.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A linear ball is a simplicial complex whose geometric realization is homeomorphic to a ball and whose Stanley-Reisner ring has a linear resolution. It turns out that the Stanley-Reisner ring of the sphere which is the boundary complex of a linear ball satisfies the multiplicity conjecture. A class of shellable spheres arising naturally from commutative algebra whose Stanley-Reisner rings satisfy the multiplicity conjecture will be presented. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:4372 / 4390
页数:19
相关论文
共 50 条