Linear balls and the multiplicity conjecture

被引:2
|
作者
Hibi, Takayuki [2 ]
Singla, Pooja [1 ]
机构
[1] Univ Duisburg Essen, FB Math, D-45117 Essen, Germany
[2] Osaka Univ, Grad Sch Informat Sci & Technol, Dept Pure & Appl Math, Osaka 5600043, Japan
关键词
combinatorial commutative algebra;
D O I
10.1016/j.jalgebra.2008.01.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A linear ball is a simplicial complex whose geometric realization is homeomorphic to a ball and whose Stanley-Reisner ring has a linear resolution. It turns out that the Stanley-Reisner ring of the sphere which is the boundary complex of a linear ball satisfies the multiplicity conjecture. A class of shellable spheres arising naturally from commutative algebra whose Stanley-Reisner rings satisfy the multiplicity conjecture will be presented. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:4372 / 4390
页数:19
相关论文
共 50 条
  • [41] Halving Balls in Deterministic Linear Time
    Hoffmann, Michael
    Kusters, Vincent
    Miltzow, Tillmann
    ALGORITHMS - ESA 2014, 2014, 8737 : 566 - 578
  • [42] On linear optimization over Wasserstein balls
    Man-Chung Yue
    Daniel Kuhn
    Wolfram Wiesemann
    Mathematical Programming, 2022, 195 : 1107 - 1122
  • [43] Improving the bounds of the multiplicity conjecture: The codimension 3 level case
    Zanello, Fabrizio
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 209 (01) : 79 - 89
  • [44] A relation between multiplicity one and Böcherer’s conjecture
    Abhishek Saha
    The Ramanujan Journal, 2014, 33 : 263 - 268
  • [45] On linear optimization over Wasserstein balls
    Yue, Man-Chung
    Kuhn, Daniel
    Wiesemann, Wolfram
    MATHEMATICAL PROGRAMMING, 2022, 195 (1-2) : 1107 - 1122
  • [46] On the Volume of Boolean Expressions of Balls - A Review of the Kneser-Poulsen Conjecture
    Csikos, Balazs
    NEW TRENDS IN INTUITIVE GEOMETRY, 2018, 27 : 65 - 94
  • [47] Linear Programs for the Kepler Conjecture
    Hales, Thomas C.
    MATHEMATICAL SOFTWARE - ICMS 2010, 2010, 6327 : 149 - 151
  • [48] Linear congruences and a conjecture of Bibak
    Babu, Chinnakonda Gnanamoorthy Karthick
    Bera, Ranjan
    Sury, Balasubramanian
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2024, 74 (04) : 1185 - 1206
  • [49] A Planar Linear Arboricity Conjecture
    Cygan, Marek
    Kowalik, Lukasz
    Luzar, Borut
    ALGORITHMS AND COMPLEXITY, PROCEEDINGS, 2010, 6078 : 204 - +
  • [50] A Planar linear arboricity conjecture
    Cygan, Marek
    Hou, Jian-Feng
    Kowalik, Lukasz
    Luzar, Borut
    Wu, Jian-Liang
    JOURNAL OF GRAPH THEORY, 2012, 69 (04) : 403 - 425