Enriques surfaces are minimal surfaces of Kodaira dimension 0 with b2=10\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$b_{2}=10$$\end{document}. If we work with a field of characteristic away from 2, Enriques surfaces admit double covers which are K3 surfaces. In this paper, we prove the Shafarevich conjecture for Enriques surfaces by reducing the problem to the case of K3 surfaces. In our formulation of the Shafarevich conjecture, we use the notion “admitting a cohomological good K3 cover”, which includes not only good reduction but also flower pot reduction.
机构:
Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, JapanUniv Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
机构:
Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, JapanUniv Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
机构:
Univ Grenoble Alpes, Inst Fourier, 100 Rue Maths,BP 74, F-38402 St Martin Dheres, FranceUniv Grenoble Alpes, Inst Fourier, 100 Rue Maths,BP 74, F-38402 St Martin Dheres, France