On the Shafarevich conjecture for Enriques surfaces

被引:0
|
作者
Teppei Takamatsu
机构
[1] The University of Tokyo,Graduate School of Mathematical Sciences
来源
Mathematische Zeitschrift | 2021年 / 298卷
关键词
Enriques surfaces; Shafarevich conjecture; 14J28; 11G35;
D O I
暂无
中图分类号
学科分类号
摘要
Enriques surfaces are minimal surfaces of Kodaira dimension 0 with b2=10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_{2}=10$$\end{document}. If we work with a field of characteristic away from 2, Enriques surfaces admit double covers which are K3 surfaces. In this paper, we prove the Shafarevich conjecture for Enriques surfaces by reducing the problem to the case of K3 surfaces. In our formulation of the Shafarevich conjecture, we use the notion “admitting a cohomological good K3 cover”, which includes not only good reduction but also flower pot reduction.
引用
收藏
页码:489 / 495
页数:6
相关论文
共 50 条