Enriques surfaces are minimal surfaces of Kodaira dimension 0 with b2=10\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$b_{2}=10$$\end{document}. If we work with a field of characteristic away from 2, Enriques surfaces admit double covers which are K3 surfaces. In this paper, we prove the Shafarevich conjecture for Enriques surfaces by reducing the problem to the case of K3 surfaces. In our formulation of the Shafarevich conjecture, we use the notion “admitting a cohomological good K3 cover”, which includes not only good reduction but also flower pot reduction.
机构:
Zhejiang Univ, Ctr Math Sci, Hangzhou, Zhejiang, Peoples R China
Univ Calif Los Angeles, Ctr Math Sci, Los Angeles, CA 90095 USAZhejiang Univ, Ctr Math Sci, Hangzhou, Zhejiang, Peoples R China
Liu, Kefeng
Todorov, Andrey
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
Bulgarian Acad Sci, Inst Math, BG-1040 Sofia, BulgariaZhejiang Univ, Ctr Math Sci, Hangzhou, Zhejiang, Peoples R China
Todorov, Andrey
Yau, Shing-Tung
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Ctr Math Sci, Hangzhou, Zhejiang, Peoples R China
Harvard Univ, Dept Math, Cambridge, MA 02138 USAZhejiang Univ, Ctr Math Sci, Hangzhou, Zhejiang, Peoples R China
Yau, Shing-Tung
Zuo, Kang
论文数: 0引用数: 0
h-index: 0
机构:
Johannes Gutenberg Univ Mainz, Dept Math, D-55099 Mainz, Germany
Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R ChinaZhejiang Univ, Ctr Math Sci, Hangzhou, Zhejiang, Peoples R China