On the Shafarevich conjecture for Enriques surfaces

被引:0
|
作者
Teppei Takamatsu
机构
[1] The University of Tokyo,Graduate School of Mathematical Sciences
来源
Mathematische Zeitschrift | 2021年 / 298卷
关键词
Enriques surfaces; Shafarevich conjecture; 14J28; 11G35;
D O I
暂无
中图分类号
学科分类号
摘要
Enriques surfaces are minimal surfaces of Kodaira dimension 0 with b2=10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_{2}=10$$\end{document}. If we work with a field of characteristic away from 2, Enriques surfaces admit double covers which are K3 surfaces. In this paper, we prove the Shafarevich conjecture for Enriques surfaces by reducing the problem to the case of K3 surfaces. In our formulation of the Shafarevich conjecture, we use the notion “admitting a cohomological good K3 cover”, which includes not only good reduction but also flower pot reduction.
引用
收藏
页码:489 / 495
页数:6
相关论文
共 50 条
  • [21] On the Shafarevich conjecture for genus-2 fibrations
    Gurjar, R. V.
    Purnaprajna, B. P.
    MATHEMATISCHE ANNALEN, 2009, 343 (04) : 791 - 800
  • [22] Shafarevich's Conjecture for CY Manifolds I
    Liu, Kefeng
    Todorov, Andrey
    Yau, Shing-Tung
    Zuo, Kang
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2005, 1 (01) : 28 - 67
  • [23] On the Shafarevich conjecture for genus-2 fibrations
    R. V. Gurjar
    B. P. Purnaprajna
    Mathematische Annalen, 2009, 343 : 791 - 800
  • [24] On Enriques-Fano threefolds and a conjecture of Castelnuovo
    Martello, Vincenzo
    MANUSCRIPTA MATHEMATICA, 2023, 172 (1-2) : 443 - 466
  • [25] On Enriques-Fano threefolds and a conjecture of Castelnuovo
    Vincenzo Martello
    manuscripta mathematica, 2023, 172 : 443 - 466
  • [26] Arithmetic of singular Enriques surfaces
    Hulek, Klaus
    Schuett, Matthias
    ALGEBRA & NUMBER THEORY, 2012, 6 (02) : 195 - 230
  • [27] ELLIPTIC FIBERS ON ENRIQUES SURFACES
    ANGERMULLER, G
    BARTH, W
    COMPOSITIO MATHEMATICA, 1982, 47 (03) : 317 - 332
  • [28] On automorphisms of Enriques surfaces and their entropy
    Matsumoto, Yuya
    Ohashi, Hisanori
    Rams, Slawomir
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (13) : 2084 - 2098
  • [29] ON THE BRAUER GROUP OF ENRIQUES SURFACES
    Beauville, Arnaud
    MATHEMATICAL RESEARCH LETTERS, 2009, 16 (5-6) : 927 - 934
  • [30] Enriques surfaces with eight nodes
    M. Mendes Lopes
    R. Pardini
    Mathematische Zeitschrift, 2002, 241 : 673 - 683