Enriques surfaces are minimal surfaces of Kodaira dimension 0 with b2=10\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$b_{2}=10$$\end{document}. If we work with a field of characteristic away from 2, Enriques surfaces admit double covers which are K3 surfaces. In this paper, we prove the Shafarevich conjecture for Enriques surfaces by reducing the problem to the case of K3 surfaces. In our formulation of the Shafarevich conjecture, we use the notion “admitting a cohomological good K3 cover”, which includes not only good reduction but also flower pot reduction.
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00173 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00173 Rome, Italy
Ciliberto, Ciro
Dedieu, Thomas
论文数: 0引用数: 0
h-index: 0
机构:
Univ Toulouse, Inst Math Toulouse UMR5219, CNRS, UPS IMT, F-31062 Toulouse 9, FranceUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00173 Rome, Italy
Dedieu, Thomas
论文数: 引用数:
h-index:
机构:
Galati, Concettina
Knutsen, Andreas Leopold
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bergen, Dept Math, Postboks 7800, N-5020 Bergen, NorwayUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00173 Rome, Italy