An effective proof of the hyperelliptic Shafarevich conjecture

被引:3
|
作者
Von Kanel, Rafael [1 ]
机构
[1] IHES, F-91440 Bures Sur Yvette, France
来源
基金
美国国家科学基金会;
关键词
S-UNIT EQUATIONS; ELLIPTIC-CURVES; BINARY FORMS; DISCRIMINANT; FINITENESS; NUMBER; CONDUCTOR; THEOREM; POINTS; GENUS;
D O I
10.5802/jtnb.877
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let C be a hyperelliptic curve of genus g >= 1 over a number field K with good reduction outside a finite set of places S of K. We prove that C has a Weierstrass model over the ring of integers of K with height effectively bounded only in terms of g, S and K. In particular, we obtain that for any given number field K, finite set of places S of K and integer g >= 1 one can in principle determine the set of K-isomorphism classes of hyperelliptic curves over K of genus g with good reduction outside S.
引用
收藏
页码:507 / 530
页数:24
相关论文
共 50 条
  • [1] Uniformly effective boundedness of Shafarevich Conjecture-type
    Heier, Gordon
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 674 : 99 - 111
  • [2] Linear Shafarevich conjecture
    Eyssidieux, P.
    Katzarkov, L.
    Pantev, T.
    Ramachandran, M.
    ANNALS OF MATHEMATICS, 2012, 176 (03) : 1545 - 1581
  • [3] The effective Shafarevich conjecture for abelian varieties of GL2-type
    von Kanel, Rafael
    FORUM OF MATHEMATICS SIGMA, 2021, 9
  • [4] On the Shafarevich conjecture for Enriques surfaces
    Teppei Takamatsu
    Mathematische Zeitschrift, 2021, 298 : 489 - 495
  • [5] On the Shafarevich conjecture for Enriques surfaces
    Takamatsu, Teppei
    MATHEMATISCHE ZEITSCHRIFT, 2021, 298 (1-2) : 489 - 495
  • [6] THE SHAFAREVICH CONJECTURE FOR BODIES OF FUNCTIONS ON Q
    MARTINDESCHAMPS, M
    ASTERISQUE, 1985, (127) : 256 - 259
  • [7] Siegel's theorem and the Shafarevich conjecture
    Levin, Aaron
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2012, 24 (03): : 705 - 727
  • [8] A semi-stable case of the Shafarevich Conjecture
    Abrashkin, Victor
    AUTOMORPHIC FORMS AND GALOIS REPRESENTATIONS, VOL 1, 2014, 414 : 1 - 31
  • [9] On the Shafarevich conjecture for genus-2 fibrations
    Gurjar, R. V.
    Purnaprajna, B. P.
    MATHEMATISCHE ANNALEN, 2009, 343 (04) : 791 - 800
  • [10] Shafarevich's Conjecture for CY Manifolds I
    Liu, Kefeng
    Todorov, Andrey
    Yau, Shing-Tung
    Zuo, Kang
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2005, 1 (01) : 28 - 67