A New Tobit Ridge-Type Estimator of the Censored Regression Model With Multicollinearity Problem

被引:5
|
作者
Dawoud, Issam [1 ]
Abonazel, Mohamed R. [2 ]
Awwad, Fuad A. [3 ]
Tag Eldin, Elsayed [4 ]
机构
[1] Al Aqsa Univ, Dept Math, Gaza, Palestine
[2] Cairo Univ, Fac Grad Studies Stat Res, Dept Appl Stat & Econometr, Giza, Egypt
[3] King Saud Univ, Coll Business Adm, Dept Quantitat Anal, Riyadh, Saudi Arabia
[4] Future Univ Egypt, Fac Engn & Technol, Elect Engn Dept, New Cairo, Egypt
关键词
censored regression model; multicollinearity; Tobit Liu estimator; Tobit ridge estimator; Tobit new ridge-type estimator; SIMULATION;
D O I
10.3389/fams.2022.952142
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the censored regression model, the Tobit maximum likelihood estimator is unstable and inefficient in the occurrence of the multicollinearity problem. To reduce this problem's effects, the Tobit ridge and the Tobit Liu estimators are proposed. Therefore, this study proposes a new kind of the Tobit estimation called the Tobit new ridge-type (TNRT) estimator. Also, the TNRT estimator was theoretically compared with the Tobit maximum likelihood, the Tobit ridge, and the Tobit Liu estimators via the mean squared error criterion. Moreover, we performed a Monte Carlo simulation to study the performance of the TNRT estimator compared with the previously defined estimators. Also, we used the Mroz dataset to confirm the theoretical and the simulation study results.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A New Ridge-Type Estimator for the Gamma Regression Model
    Lukman, Adewale F.
    Dawoud, Issam
    Kibria, B. M. Golam
    Algamal, Zakariya Y.
    Aladeitan, Benedicta
    [J]. SCIENTIFICA, 2021, 2021
  • [2] Ridge-Type MML Estimator in the Linear Regression Model
    Sukru Acitas
    Birdal Senoglu
    [J]. Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43 : 589 - 599
  • [3] A New Ridge-Type Estimator for the Linear Regression Model: Simulations and Applications
    Kibria, B. M. Golam
    Lukman, Adewale F.
    [J]. SCIENTIFICA, 2020, 2020
  • [4] A new ridge-type estimator for the linear regression model with correlated regressors
    Owolabi, Abiola T.
    Ayinde, Kayode
    Alabi, Olusegun O.
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (15):
  • [5] Modified ridge-type estimator for the gamma regression model
    Lukman, Adewale F.
    Ayinde, Kayode
    Kibria, B. M. Golam
    Adewuyi, Emmanuel T.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (09) : 5009 - 5023
  • [6] Ridge-Type MML Estimator in the Linear Regression Model
    Acitas, Sukru
    Senoglu, Birdal
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A2): : 589 - 599
  • [7] A new modified ridge-type estimator for the beta regression model: simulation and application
    Akram, Muhammad Nauman
    Amin, Muhammad
    Elhassanein, Ahmed
    Ullah, Muhammad Aman
    [J]. AIMS MATHEMATICS, 2022, 7 (01): : 1035 - 1057
  • [8] Modified ridge-type estimator for the inverse Gaussian regression model
    Akram, Muhammad Nauman
    Amin, Muhammad
    Ullah, Muhammad Aman
    Afzal, Saima
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (10) : 3314 - 3332
  • [9] A new ridge-type estimator in stochastic restricted linear regression
    Li, Yalian
    Yang, Hu
    [J]. STATISTICS, 2011, 45 (02) : 123 - 130
  • [10] Modified ridge-type estimator to combat multicollinearity: Application to chemical data
    Lukman, Adewale F.
    Ayinde, Kayode
    Binuomote, Samuel
    Clement, Onate A.
    [J]. JOURNAL OF CHEMOMETRICS, 2019, 33 (05)