Modified ridge-type estimator for the inverse Gaussian regression model

被引:3
|
作者
Akram, Muhammad Nauman [1 ]
Amin, Muhammad [1 ]
Ullah, Muhammad Aman [2 ]
Afzal, Saima [2 ]
机构
[1] Univ Sargodha, Dept Stat, Sargodha, Pakistan
[2] Bahauddin Zakariya Univ, Dept Stat, Multan, Pakistan
关键词
IGRM; multicollinearity; IGMRTE; MLE; ridge estimator; PERFORMANCE;
D O I
10.1080/03610926.2021.1970773
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers the parameter estimation for the inverse Gaussian regression model (IGRM) in the presence of multicollinearity. The inverse Gaussian modified ridge-type estimator (IGMRTE) is developed for efficient parameter estimation and compared with other estimation methods such as the maximum likelihood estimator (MLE), ridge and Liu estimator. We derived the properties of the proposed estimator and conducted a theoretical comparison with some of the existing estimators using the matrix mean squared error and mean squared error criterions. Furthermore, the statistical properties of these estimators are systematically scrutinized via a Monte Carlo simulation study under different conditions. The findings of the simulation study demonstrate that the proposed IGMRTE showed a much more robust behavior in the presence of severe multicollinearity. A real life example is also analyzed to evaluate the effectiveness of the estimators under study. Both the simulation and the application results confirm the use of IGMRTE for the estimation of unknown regression coefficients of the IGRM when the explanatory variables are highly correlated.
引用
收藏
页码:3314 / 3332
页数:19
相关论文
共 50 条
  • [1] Modified ridge-type estimator for the gamma regression model
    Lukman, Adewale F.
    Ayinde, Kayode
    Kibria, B. M. Golam
    Adewuyi, Emmanuel T.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (09) : 5009 - 5023
  • [2] Ridge-Type MML Estimator in the Linear Regression Model
    Sukru Acitas
    Birdal Senoglu
    [J]. Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43 : 589 - 599
  • [3] Modified ridge-type estimator for the zero inflated negative binomial regression model
    Akram, Muhammad Nauman
    Afzal, Nimra
    Amin, Muhammad
    Batool, Asia
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023,
  • [4] A New Ridge-Type Estimator for the Gamma Regression Model
    Lukman, Adewale F.
    Dawoud, Issam
    Kibria, B. M. Golam
    Algamal, Zakariya Y.
    Aladeitan, Benedicta
    [J]. SCIENTIFICA, 2021, 2021
  • [5] Ridge-Type MML Estimator in the Linear Regression Model
    Acitas, Sukru
    Senoglu, Birdal
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A2): : 589 - 599
  • [6] A new modified ridge-type estimator for the beta regression model: simulation and application
    Akram, Muhammad Nauman
    Amin, Muhammad
    Elhassanein, Ahmed
    Ullah, Muhammad Aman
    [J]. AIMS MATHEMATICS, 2022, 7 (01): : 1035 - 1057
  • [7] Principal component ridge type estimator for the inverse Gaussian regression model
    Akram, Muhammad Nauman
    Amin, Muhammad
    Lukman, Adewale F.
    Afzal, Saima
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (10) : 2060 - 2089
  • [8] A Modified Ridge-Type Logistic Estimator
    Adewale F. Lukman
    Adewuyi Emmanuel
    Onate A. Clement
    Kayode Ayinde
    [J]. Iranian Journal of Science and Technology, Transactions A: Science, 2020, 44 : 437 - 443
  • [9] Restricted ridge estimator in the Inverse Gaussian regression model
    Alsarraf, Israa Najeeb Saeed
    Algamal, Zakariya Yahya
    [J]. ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2022, 15 (03) : 574 - 587
  • [10] A Modified Ridge-Type Logistic Estimator
    Lukman, Adewale F.
    Emmanuel, Adewuyi
    Clement, Onate A.
    Ayinde, Kayode
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2020, 44 (02): : 437 - 443