Modified ridge-type estimator for the inverse Gaussian regression model

被引:3
|
作者
Akram, Muhammad Nauman [1 ]
Amin, Muhammad [1 ]
Ullah, Muhammad Aman [2 ]
Afzal, Saima [2 ]
机构
[1] Univ Sargodha, Dept Stat, Sargodha, Pakistan
[2] Bahauddin Zakariya Univ, Dept Stat, Multan, Pakistan
关键词
IGRM; multicollinearity; IGMRTE; MLE; ridge estimator; PERFORMANCE;
D O I
10.1080/03610926.2021.1970773
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers the parameter estimation for the inverse Gaussian regression model (IGRM) in the presence of multicollinearity. The inverse Gaussian modified ridge-type estimator (IGMRTE) is developed for efficient parameter estimation and compared with other estimation methods such as the maximum likelihood estimator (MLE), ridge and Liu estimator. We derived the properties of the proposed estimator and conducted a theoretical comparison with some of the existing estimators using the matrix mean squared error and mean squared error criterions. Furthermore, the statistical properties of these estimators are systematically scrutinized via a Monte Carlo simulation study under different conditions. The findings of the simulation study demonstrate that the proposed IGMRTE showed a much more robust behavior in the presence of severe multicollinearity. A real life example is also analyzed to evaluate the effectiveness of the estimators under study. Both the simulation and the application results confirm the use of IGMRTE for the estimation of unknown regression coefficients of the IGRM when the explanatory variables are highly correlated.
引用
收藏
页码:3314 / 3332
页数:19
相关论文
共 50 条
  • [41] Integrating Ridge-type regularization in fuzzy nonlinear regression
    Farnoosh, R.
    Ghasemian, J.
    Fard, O. Solaymani
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2012, 31 (02): : 323 - 338
  • [42] Influence diagnostics in the inverse Gaussian ridge regression model: Applications in chemometrics
    Amin, Muhammad
    Faisal, Muhammad
    Akram, Muhammad Nauman
    [J]. JOURNAL OF CHEMOMETRICS, 2021, 35 (06)
  • [43] MODIFIED RIDGE ESTIMATOR IN ZERO-INFLATED POISSON REGRESSION MODEL
    Younus, Farah Abdul Ghani
    Othman, Rafal Adeeb
    Algamal, Zakariya Yahya
    [J]. INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2022, 18 : 1245 - 1250
  • [44] Difference-based ridge-type estimator of parameters in restricted partial linear model with correlated errors
    Wu, Jibo
    [J]. SPRINGERPLUS, 2016, 5 : 1 - 10
  • [45] Robust modified jackknife ridge estimator for the Poisson regression model with multicollinearity and outliers
    Arum, Kingsley C.
    Ugwuowo, Fidelis, I
    Oranye, Henrietta E.
    [J]. SCIENTIFIC AFRICAN, 2022, 17
  • [46] A modified ridge m-estimator for linear regression model with multicollinearity and outliers
    Ertas, Hasan
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (04) : 1240 - 1250
  • [47] Modified Jackknifed Ridge Estimator in Bell Regression Model: Theory, Simulation and Applications
    Algamal Z.Y.
    Lukman A.F.
    Golam Kibria B.M.
    Olatunji Taofik A.
    [J]. Iraqi Journal for Computer Science and Mathematics, 2023, 4 (01): : 146 - 154
  • [48] Ridge estimator in a mixed Poisson regression model
    Tharshan, Ramajeyam
    Wijekoon, Pushpakanthie
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (07) : 3253 - 3270
  • [49] A New Ridge Estimator for the Poisson Regression Model
    Nadwa K. Rashad
    Zakariya Yahya Algamal
    [J]. Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43 : 2921 - 2928
  • [50] Inverse Gaussian Liu-type estimator
    Bulut, Y. Murat
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (10) : 4864 - 4879