A New Tobit Ridge-Type Estimator of the Censored Regression Model With Multicollinearity Problem

被引:5
|
作者
Dawoud, Issam [1 ]
Abonazel, Mohamed R. [2 ]
Awwad, Fuad A. [3 ]
Tag Eldin, Elsayed [4 ]
机构
[1] Al Aqsa Univ, Dept Math, Gaza, Palestine
[2] Cairo Univ, Fac Grad Studies Stat Res, Dept Appl Stat & Econometr, Giza, Egypt
[3] King Saud Univ, Coll Business Adm, Dept Quantitat Anal, Riyadh, Saudi Arabia
[4] Future Univ Egypt, Fac Engn & Technol, Elect Engn Dept, New Cairo, Egypt
关键词
censored regression model; multicollinearity; Tobit Liu estimator; Tobit ridge estimator; Tobit new ridge-type estimator; SIMULATION;
D O I
10.3389/fams.2022.952142
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the censored regression model, the Tobit maximum likelihood estimator is unstable and inefficient in the occurrence of the multicollinearity problem. To reduce this problem's effects, the Tobit ridge and the Tobit Liu estimators are proposed. Therefore, this study proposes a new kind of the Tobit estimation called the Tobit new ridge-type (TNRT) estimator. Also, the TNRT estimator was theoretically compared with the Tobit maximum likelihood, the Tobit ridge, and the Tobit Liu estimators via the mean squared error criterion. Moreover, we performed a Monte Carlo simulation to study the performance of the TNRT estimator compared with the previously defined estimators. Also, we used the Mroz dataset to confirm the theoretical and the simulation study results.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] A Modified Ridge-Type Logistic Estimator
    Lukman, Adewale F.
    Emmanuel, Adewuyi
    Clement, Onate A.
    Ayinde, Kayode
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2020, 44 (02): : 437 - 443
  • [22] On a new class of binomial ridge-type regression estimators
    Abdel-Fattah, Mahmoud A.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (06) : 3272 - 3290
  • [23] A New Estimator for the Gaussian Linear Regression Model with Multicollinearity
    Dawoud, Issam
    Kibria, B. M. Golam
    Lukman, Adewale F.
    Olufemi, Onifade C.
    [J]. THAILAND STATISTICIAN, 2023, 21 (04): : 910 - 925
  • [24] A modified ridge m-estimator for linear regression model with multicollinearity and outliers
    Ertas, Hasan
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (04) : 1240 - 1250
  • [25] Robust modified jackknife ridge estimator for the Poisson regression model with multicollinearity and outliers
    Arum, Kingsley C.
    Ugwuowo, Fidelis, I
    Oranye, Henrietta E.
    [J]. SCIENTIFIC AFRICAN, 2022, 17
  • [26] A RIDGE-TYPE ESTIMATOR AND GOOD PRIOR MEANS
    PLISKIN, JL
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1987, 16 (12) : 3429 - 3437
  • [27] A Mallows-type model averaging estimator for ridge regression with randomly right censored data
    Zeng, Jie
    Hu, Guozhi
    Cheng, Weihu
    [J]. STATISTICS AND COMPUTING, 2024, 34 (05)
  • [28] Modified ridge-type for the Poisson regression model: simulation and application
    Lukman, Adewale F.
    Aladeitan, Benedicta
    Ayinde, Kayode
    Abonazel, Mohamed R.
    [J]. JOURNAL OF APPLIED STATISTICS, 2022, 49 (08) : 2124 - 2136
  • [29] Penalized and ridge-type shrinkage estimators in Poisson regression model
    Noori Asl, Mehri
    Bevrani, Hossein
    Arabi Belaghi, Reza
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (07) : 4039 - 4056
  • [30] Optimum shrinkage parameter selection for ridge type estimator of Tobit model
    Aydin, Dursun
    Guneri, Oznur Isci
    Yilmaz, Ersin
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (05) : 952 - 975