A new ridge-type estimator in stochastic restricted linear regression

被引:24
|
作者
Li, Yalian [1 ]
Yang, Hu [1 ]
机构
[1] Chongqing Univ, Coll Math & Phys, Chongqing 400030, Peoples R China
关键词
weighted mixed ridge estimator; ordinary ridge estimator; weighted mixed estimator; mixed ridge estimator; mean squared error matrix; PRIOR INFORMATION; ERROR;
D O I
10.1080/02331880903573153
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we propose a new ridge-type estimator called the weighted mixed ridge estimator by unifying the sample and prior information in linear model with additional stochastic linear restrictions. The new estimator is a generalization of the weighted mixed estimator [B. Schaffrin and H. Toutenburg, Weighted mixed regression, Zeitschrift fur Angewandte Mathematik und Mechanik 70 (1990), pp. 735-738] and ordinary ridge estimator (ORE) [A.E. Hoerl and R.W. Kennard, Ridge regression: Biased estimation for non-orthogonal problems, Technometrics 12 (1970), pp. 55-67]. The performances of this new estimator against the weighted mixed estimator, ORE and the mixed ridge estimator [Y.L. Li and H. Yang, A new stochastic mixed ridge estimator in linear regression, Stat. Pap. (2008) (in press, DOI 10.1007/s00362-008-0169-5)] are examined in terms of the mean squared error matrix sense. Finally, a numerical example and a Monte Carlo simulation are also given to show the theoretical results.
引用
收藏
页码:123 / 130
页数:8
相关论文
共 50 条
  • [1] Ridge-Type MML Estimator in the Linear Regression Model
    Sukru Acitas
    Birdal Senoglu
    [J]. Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43 : 589 - 599
  • [2] A Generalized Diagonal Ridge-type Estimator in Linear Regression
    Liang, Fei-Bao
    Lan, Yi-Xin
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (06) : 1145 - 1163
  • [3] A New Ridge-Type Estimator for the Linear Regression Model: Simulations and Applications
    Kibria, B. M. Golam
    Lukman, Adewale F.
    [J]. SCIENTIFICA, 2020, 2020
  • [4] A new ridge-type estimator for the linear regression model with correlated regressors
    Owolabi, Abiola T.
    Ayinde, Kayode
    Alabi, Olusegun O.
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (15):
  • [5] Ridge-Type MML Estimator in the Linear Regression Model
    Acitas, Sukru
    Senoglu, Birdal
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A2): : 589 - 599
  • [6] A New Ridge-Type Estimator for the Gamma Regression Model
    Lukman, Adewale F.
    Dawoud, Issam
    Kibria, B. M. Golam
    Algamal, Zakariya Y.
    Aladeitan, Benedicta
    [J]. SCIENTIFICA, 2021, 2021
  • [7] A stochastic restricted ridge regression estimator
    Ozkale, M. Revan
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (08) : 1706 - 1716
  • [8] A new version of unbiased ridge regression estimator under the stochastic restricted linear regression model
    Alheety, Mustafa I.
    Kibria, B. M. Golam
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2021, 50 (06) : 1589 - 1599
  • [9] Performance of Some Stochastic Restricted Ridge Estimator in Linear Regression Model
    Wu, Jibo
    Liu, Chaolin
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [10] A Generalized Stochastic Restricted Ridge Regression Estimator
    Alheety, M. I.
    Kibria, B. M. Golam
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (20) : 4415 - 4427