A New Ridge-Type Estimator for the Linear Regression Model: Simulations and Applications

被引:96
|
作者
Kibria, B. M. Golam [1 ]
Lukman, Adewale F. [2 ,3 ]
机构
[1] Florida Int Univ, Dept Math & Stat, Miami, FL 33199 USA
[2] Landmark Univ, Dept Phys Sci, Omu Aran, Nigeria
[3] Ctr Emile Borel, Inst Henri Poincare, Paris, France
来源
SCIENTIFICA | 2020年 / 2020卷
关键词
LIU-TYPE ESTIMATOR; BIASED-ESTIMATION; MONTE-CARLO;
D O I
10.1155/2020/9758378
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The ridge regression-type (Hoerl and Kennard, 1970) and Liu-type (Liu, 1993) estimators are consistently attractive shrinkage methods to reduce the effects of multicollinearity for both linear and nonlinear regression models. This paper proposes a new estimator to solve the multicollinearity problem for the linear regression model. Theory and simulation results show that, under some conditions, it performs better than both Liu and ridge regression estimators in the smaller MSE sense. Two real-life (chemical and economic) data are analyzed to illustrate the findings of the paper.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Ridge-Type MML Estimator in the Linear Regression Model
    Sukru Acitas
    Birdal Senoglu
    [J]. Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43 : 589 - 599
  • [2] Ridge-Type MML Estimator in the Linear Regression Model
    Acitas, Sukru
    Senoglu, Birdal
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A2): : 589 - 599
  • [3] A new ridge-type estimator for the linear regression model with correlated regressors
    Owolabi, Abiola T.
    Ayinde, Kayode
    Alabi, Olusegun O.
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (15):
  • [4] A New Ridge-Type Estimator for the Gamma Regression Model
    Lukman, Adewale F.
    Dawoud, Issam
    Kibria, B. M. Golam
    Algamal, Zakariya Y.
    Aladeitan, Benedicta
    [J]. SCIENTIFICA, 2021, 2021
  • [5] A new ridge-type estimator in stochastic restricted linear regression
    Li, Yalian
    Yang, Hu
    [J]. STATISTICS, 2011, 45 (02) : 123 - 130
  • [6] A Generalized Diagonal Ridge-type Estimator in Linear Regression
    Liang, Fei-Bao
    Lan, Yi-Xin
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (06) : 1145 - 1163
  • [7] Modified ridge-type estimator for the gamma regression model
    Lukman, Adewale F.
    Ayinde, Kayode
    Kibria, B. M. Golam
    Adewuyi, Emmanuel T.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (09) : 5009 - 5023
  • [8] A New Tobit Ridge-Type Estimator of the Censored Regression Model With Multicollinearity Problem
    Dawoud, Issam
    Abonazel, Mohamed R.
    Awwad, Fuad A.
    Tag Eldin, Elsayed
    [J]. FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2022, 8
  • [9] A new modified ridge-type estimator for the beta regression model: simulation and application
    Akram, Muhammad Nauman
    Amin, Muhammad
    Elhassanein, Ahmed
    Ullah, Muhammad Aman
    [J]. AIMS MATHEMATICS, 2022, 7 (01): : 1035 - 1057
  • [10] Modified ridge-type estimator for the inverse Gaussian regression model
    Akram, Muhammad Nauman
    Amin, Muhammad
    Ullah, Muhammad Aman
    Afzal, Saima
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (10) : 3314 - 3332