Bilinear operator multipliers into the trace class

被引:1
|
作者
Le Merdy, Christian [1 ]
Todorov, Ivan G. [2 ]
Turowska, Lyudmila [3 ,4 ]
机构
[1] Univ Bourgogne Franche Comte, Lab Math Besancon, CNRS, UMR 6623, F-25030 Besancon, France
[2] Queens Univ Belfast, Math Sci Res Ctr, Belfast BT7 1NN, Antrim, North Ireland
[3] Chalmers Univ Technol, Dept Math Sci, SE-41296 Gothenburg, Sweden
[4] Univ Gothenburg, SE-41296 Gothenburg, Sweden
关键词
Completely bounded maps; Operator space tensor products; Multipliers; Trace class; TENSOR-PRODUCTS; MODULE MAPS; HAAGERUP;
D O I
10.1016/j.jfa.2020.108649
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given Hilbert spaces H-1, H-2, H-3, we consider bilinear maps defined on the cartesian product S-2(H-2, H-3) x S-2 (H-1, H-2) of spaces of Hilbert-Schmidt operators and valued in either the space B(H-1, H-3) of bounded operators, or in the space S-1(H-1, H-3) of trace class operators. We introduce modular properties of such maps with respect to the commutants of von Neumann algebras M-i subset of B(H-i), i = 1,2,3, as well as an appropriate notion of complete boundedness for such maps. We characterize completely bounded module maps u: S-2 (H-2, H-3) x S-2 (H-1, H-2) -> B(H-1, H-3) by the membership of a natural symbol of u to the von Neumann algebra tensor product M-1(circle times) over barM(2)(op)(circle times) over barM(3). In the case when M-2 is injective, we characterize completely bounded module maps u: S-2 (H-2, H-3) x S-2 (H-1, H-2) -> S-1(H-1, H-3) by a weak factorization property, which extends to the bilinear setting a famous description of bimodule linear mappings going back to Haagerup, Effros-Kishimoto, Smith and Blecher-Smith. We make crucial use of a theorem of Sinclair-Smith on completely bounded bilinear maps valued in an injective von Neumann algebra, and provide a new proof of it, based on Hilbert C*- modules. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:40
相关论文
共 50 条
  • [21] Alternating direction method of multipliers for a class of nonconvex bilinear optimization: convergence analysis and applications
    Hajinezhad, Davood
    Shi, Qingjiang
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2018, 70 (01) : 261 - 288
  • [22] Bilinear multipliers on weighted Orlicz spaces
    Uster, Ruya
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2024, 31 (03) : 497 - 508
  • [23] Bilinear Spectral Multipliers on Heisenberg Groups
    Naiqi Song
    Heping Liu
    Jiman Zhao
    [J]. Acta Mathematica Scientia, 2021, 41 : 968 - 990
  • [24] Notes on bilinear multipliers on Orlicz spaces
    Blasco, Oscar
    Osancliol, Alen
    [J]. MATHEMATISCHE NACHRICHTEN, 2019, 292 (12) : 2522 - 2536
  • [25] Bilinear Multipliers on Banach Function Spaces
    Blasco, Oscar
    [J]. JOURNAL OF FUNCTION SPACES, 2019, 2019
  • [26] BILINEAR SPECTRAL MULTIPLIERS ON HEISENBERG GROUPS
    宋乃琪
    刘和平
    赵纪满
    [J]. Acta Mathematica Scientia, 2021, 41 (03) : 968 - 990
  • [27] Jodeit's extensions for bilinear multipliers
    Madan, Shobha
    Mohanty, Parasar
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2008, 40 : 937 - 944
  • [28] Bilinear Fourier Multipliers of Bounded Variation
    Baena-Miret, Sergi
    Carro, Maria J.
    Luque, Teresa
    Sanchez-Pascuala, Laura
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (24) : 21943 - 21975
  • [29] Transference of bilinear multipliers on Lorentz spaces
    Liu, Ziyao
    Fan, Dashan
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (01) : 87 - 107
  • [30] Bilinear multipliers of small Lebesgue spaces
    Kulak, Oznur
    Gurkanli, A. Turan
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (05) : 1959 - 1984