Transference of bilinear multipliers on Lorentz spaces

被引:1
|
作者
Liu, Ziyao [1 ]
Fan, Dashan [1 ,2 ]
机构
[1] Zhejiang Normal Univ, Dept Math Sci, Jinhua 321004, Zhejiang, Peoples R China
[2] Univ Wisconsin Milwaukee, Dept Math Sci, Milwaukee, WI 53201 USA
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Bilinear multipliers; Maximal operator; Transference; Restriction of multiplier; Lorentz spaces; OPERATORS;
D O I
10.1007/s10231-023-01354-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study DeLeeuw type transference theorems for multi-linear multiplier operators on the Lorentz spaces. To be detail, we show that, under some mild conditions on m, a bilinear multiplier operator Tm,1( f, g) is bounded on the Lorentz space in Rn if and only if its periodic version (T) over tilde (m,e)( (f) over tilde, (g) over tilde) is bounded on the Lorentz space in the n-torus T-n uniformly on epsilon > 0. Most significantly, we prove that these two operators share the same operator norm. We also obtain the same results on their restriction versions and their maximal versions T*(m)(f,g) and (T) over tilde *m((f) over tilde, (g) over tilde). The previous method by Kenig and Tomas to treat the sub-linear operator T*(m)( f) is to linearize the operator and then invoke the duality argument. This approach seems complicated and difficult to be used when we study the sub-bilinear operator T*(m)( f, g). Thus, we will use a simpler, but different method. Our results are substantial improvements and extensions of many known theorems.
引用
收藏
页码:87 / 107
页数:21
相关论文
共 50 条
  • [1] Transference of bilinear multipliers on Lorentz spaces
    Ziyao Liu
    Dashan Fan
    [J]. Annali di Matematica Pura ed Applicata (1923 -), 2024, 203 : 87 - 107
  • [2] Bilinear multipliers on Lorentz spaces
    Francisco Villarroya
    [J]. Czechoslovak Mathematical Journal, 2008, 58
  • [3] BILINEAR MULTIPLIERS ON LORENTZ SPACES
    Villarroya, Francisco
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2008, 58 (04) : 1045 - 1057
  • [4] Transference of bilinear multiplier operators on Lorentz spaces
    Blasco, O
    Villarroya, F
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2003, 47 (04) : 1327 - 1343
  • [5] ON THE EXISTENCE OF LINEAR AND BILINEAR MULTIPLIERS ON LORENTZ SPACES
    Sato, Enji
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2011, 14 (02): : 481 - 491
  • [6] Transference and Restriction of Bilinear Fourier Multipliers on Orlicz Spaces
    Blasco, Oscar
    UEster, Rueya
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (01)
  • [7] The spaces of bilinear multipliers of weighted Lorentz type modulation spaces
    Gurkanli, Ahmet Turan
    Kulak, Oznur
    Sandikci, Ayse
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2016, 23 (03) : 351 - 362
  • [8] Spaces of Lorentz multipliers
    Hare, KE
    Sato, E
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2001, 53 (03): : 565 - 591
  • [9] NOTES ON THE SPACES OF BILINEAR MULTIPLIERS
    Blasco, Oscar
    [J]. REVISTA DE LA UNION MATEMATICA ARGENTINA, 2009, 50 (02): : 23 - 37
  • [10] MULTIPLIERS ON SOME LORENTZ SPACES
    Eryilmaz, Ilker
    Duyar, Cenap
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2011, 19 (01): : 93 - 107