ON THE EXISTENCE OF LINEAR AND BILINEAR MULTIPLIERS ON LORENTZ SPACES

被引:0
|
作者
Sato, Enji [1 ]
机构
[1] Yamagata Univ, Fac Sci, Dept Math Sci, Yamagata 9908560, Japan
来源
关键词
Lorentz spaces; bilinear operator; TRANSFERENCE; OPERATORS; R(N);
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
First we show that any translation invariant bounded linear operator from L(p,t)(R) the Lorentz space on R to L(p,s)(R) (1 < p < infinity, 1 <= s < t < infinity) is trivial, whose result improves Blozinski's result [4]. Next let phi be a bounded continuous function on R(2), and T(phi)(f,g)(x) = integral integral phi(xi,eta)(f) over cap(xi)(g) over cap(eta)e(i,x(xi+eta))d xi d eta the bilinear operator on Lorentz spaces. Then, we prove that the bounded bilinear operator T(phi) is trivial in some cases of Lorentz spaces.
引用
收藏
页码:481 / 491
页数:11
相关论文
共 50 条
  • [1] Bilinear multipliers on Lorentz spaces
    Francisco Villarroya
    [J]. Czechoslovak Mathematical Journal, 2008, 58
  • [2] BILINEAR MULTIPLIERS ON LORENTZ SPACES
    Villarroya, Francisco
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2008, 58 (04) : 1045 - 1057
  • [3] Transference of bilinear multipliers on Lorentz spaces
    Liu, Ziyao
    Fan, Dashan
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (01) : 87 - 107
  • [4] Transference of bilinear multipliers on Lorentz spaces
    Ziyao Liu
    Dashan Fan
    [J]. Annali di Matematica Pura ed Applicata (1923 -), 2024, 203 : 87 - 107
  • [5] The spaces of bilinear multipliers of weighted Lorentz type modulation spaces
    Gurkanli, Ahmet Turan
    Kulak, Oznur
    Sandikci, Ayse
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2016, 23 (03) : 351 - 362
  • [6] Linear and bilinear Fourier multipliers on Orlicz modulation spaces
    Blasco, Oscar
    Oztop, Serap
    Uster, Ruya
    [J]. MONATSHEFTE FUR MATHEMATIK, 2024, 204 (04): : 679 - 705
  • [7] Spaces of Lorentz multipliers
    Hare, KE
    Sato, E
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2001, 53 (03): : 565 - 591
  • [8] NOTES ON THE SPACES OF BILINEAR MULTIPLIERS
    Blasco, Oscar
    [J]. REVISTA DE LA UNION MATEMATICA ARGENTINA, 2009, 50 (02): : 23 - 37
  • [9] MULTIPLIERS ON SOME LORENTZ SPACES
    Eryilmaz, Ilker
    Duyar, Cenap
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2011, 19 (01): : 93 - 107
  • [10] Bilinear multipliers on weighted Orlicz spaces
    Uster, Ruya
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2024, 31 (03) : 497 - 508