NOTES ON THE SPACES OF BILINEAR MULTIPLIERS

被引:0
|
作者
Blasco, Oscar [1 ]
机构
[1] Univ Valencia, Dept Math, E-46100 Valencia, Spain
来源
关键词
spaces of bilinear multipliers; bilinear Hilbert transform; bilinear fractional transform; TRANSFORM; OPERATORS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A locally integrable function m(xi, eta) defined on R-n x R-n is said to be a bilinear multiplier on R-n of type (p(1), p(2), p(3)) if B-m(f, g)(x) = integral(Rn) integral(Rn) (f) over cap(xi)(g) over cap(eta)m(xi, eta)e(2 pi i <xi+eta,x >) d xi d eta defines a bounded bilinear operator from L-p1(R-n) x L-p2 (R-n) to L-p3 (R-n). The study of the basic properties of such spaces is investigated and several methods of constructing examples of bilinear multipliers are provided. The special case where m(xi,eta) = M(xi - eta) for a given M defined on R-n is also addressed.
引用
收藏
页码:23 / 37
页数:15
相关论文
共 50 条