Bilinear multipliers of small Lebesgue spaces

被引:0
|
作者
Kulak, Oznur [1 ]
Gurkanli, A. Turan [2 ]
机构
[1] Amasya Univ, Fac Arts & Sci, Dept Math, Amasya, Turkey
[2] Istanbul Arel Univ, Fac Sci & Letters, Dept Math & Comp Sci, Istanbul, Turkey
关键词
Bilinear multipliers; grand Lebesgue spaces; small Lebesgue spaces; GRAND;
D O I
10.3906/mat-2101-94
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a compact abelian metric group with Haar measure lambda and (G) over cap its dual with Haar measure mu. Assume that 1 < p(i) < infinity, p(i)' = p(i)/p(i)-1, (i = 1, 2, 3) and theta >= 0. Let L-(pi' ,L-theta (G), (i = 1, 2, 3) be small Lebesgue spaces. A bounded sequence m(xi, eta) defined on G (over cap) x G (over cap) is said to be a bilinear multiplier on G of type [(p'(1); (p'(2); (p'(3)]. if the bilinear operator B-m associated with the symbol m B-m (f, g) (x) = Sigma(delta is an element of G)Sigma(t is an element of G) (f) over cap (s) (g) over cap (t) m(s, t) (s + t, x) defines a bounded bilinear operator from L-(p'1,L- theta (G) x L-(p2',L-theta (G) into L-(p3',L-theta (G). We denote by BM theta [(p(1)' ; (p(2)' ; (p(3)'] the space of all bilinear multipliers of type [(p(1)'; (p(2)'; (p(3)'](theta). In this paper, we discuss some basic properties of the space BM. [(p(1)'; (p(2)'; (p(3)'] and give examples of bilinear multipliers.
引用
收藏
页码:1959 / 1984
页数:26
相关论文
共 50 条