Bilinear multipliers of small Lebesgue spaces

被引:0
|
作者
Kulak, Oznur [1 ]
Gurkanli, A. Turan [2 ]
机构
[1] Amasya Univ, Fac Arts & Sci, Dept Math, Amasya, Turkey
[2] Istanbul Arel Univ, Fac Sci & Letters, Dept Math & Comp Sci, Istanbul, Turkey
关键词
Bilinear multipliers; grand Lebesgue spaces; small Lebesgue spaces; GRAND;
D O I
10.3906/mat-2101-94
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a compact abelian metric group with Haar measure lambda and (G) over cap its dual with Haar measure mu. Assume that 1 < p(i) < infinity, p(i)' = p(i)/p(i)-1, (i = 1, 2, 3) and theta >= 0. Let L-(pi' ,L-theta (G), (i = 1, 2, 3) be small Lebesgue spaces. A bounded sequence m(xi, eta) defined on G (over cap) x G (over cap) is said to be a bilinear multiplier on G of type [(p'(1); (p'(2); (p'(3)]. if the bilinear operator B-m associated with the symbol m B-m (f, g) (x) = Sigma(delta is an element of G)Sigma(t is an element of G) (f) over cap (s) (g) over cap (t) m(s, t) (s + t, x) defines a bounded bilinear operator from L-(p'1,L- theta (G) x L-(p2',L-theta (G) into L-(p3',L-theta (G). We denote by BM theta [(p(1)' ; (p(2)' ; (p(3)'] the space of all bilinear multipliers of type [(p(1)'; (p(2)'; (p(3)'](theta). In this paper, we discuss some basic properties of the space BM. [(p(1)'; (p(2)'; (p(3)'] and give examples of bilinear multipliers.
引用
收藏
页码:1959 / 1984
页数:26
相关论文
共 50 条
  • [31] SMOOTHING PROPERTIES OF BILINEAR OPERATORS AND LEIBNIZ-TYPE RULES IN LEBESGUE AND MIXED LEBESGUE SPACES
    Hart, Jarod
    Torres, Rodolfo H.
    Wu, Xinfeng
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (12) : 8581 - 8612
  • [32] Iterated grand and small Lebesgue spaces
    Anatriello, Giuseppina
    [J]. COLLECTANEA MATHEMATICA, 2014, 65 (02) : 273 - 284
  • [33] Iterated grand and small Lebesgue spaces
    Giuseppina Anatriello
    [J]. Collectanea Mathematica, 2014, 65 : 273 - 284
  • [34] Fully measurable small Lebesgue spaces
    Anatriello, Giuseppina
    Formica, Maria Rosaria
    Giova, Raffaella
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 447 (01) : 550 - 563
  • [35] Grand and small norms in Lebesgue spaces
    Berezhnoi, Evgeny
    Karapetyants, Alexey
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (02) : 725 - 741
  • [36] Grand and small Lebesgue spaces and their analogs
    Fiorenza, A
    Karadzhov, GE
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2004, 23 (04): : 657 - 681
  • [37] Tractable embeddings of Besov spaces into small Lebesgue spaces
    Dominguez, Oscar
    [J]. MATHEMATISCHE NACHRICHTEN, 2016, 289 (14-15) : 1739 - 1759
  • [38] Singular operators and Fourier multipliers in weighted Lebesgue spaces with variable index
    Kokilashvili V.M.
    Samko S.G.
    [J]. Vestnik St. Petersburg University: Mathematics, 2008, 41 (2) : 134 - 144
  • [39] WEIGHTED NORM INEQUALITIES FOR THE BILINEAR MAXIMAL OPERATOR ON VARIABLE LEBESGUE SPACES
    Cruz-Uribe, D.
    Guzman, O. M.
    [J]. PUBLICACIONS MATEMATIQUES, 2020, 64 (02) : 453 - 498
  • [40] Marcinkiewicz-Type Spectral Multipliers on Hardy and Lebesgue Spaces on Product Spaces of Homogeneous Type
    Chen, Peng
    Xuan Thinh Duong
    Li, Ji
    Ward, Lesley A.
    Yan, Lixin
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2017, 23 (01) : 21 - 64