Spaces of Lorentz multipliers

被引:3
|
作者
Hare, KE [1 ]
Sato, E
机构
[1] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
[2] Yamagata Univ, Fac Sci, Dept Math Sci, Yamagata 9908560, Japan
关键词
multipliers; convolution operators; Lorentz spaces; Lorentz-improving multipliers;
D O I
10.4153/CJM-2001-024-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study when the spaces of Lorentz multipliers from L-p,L-t --> L-p,L-5 are distinct. Our main interest is the case when s < t, the Lorentz-improving multipliers. We prove, for example, that the space of multipliers which map L-p,L-t --> L-p,L-s is different from those mapping L-r,L-v --> L-r,L-u if either r = p or p' and 1/s - 1/t not equal 1/u - 1/v, or r not equal p or p'. These results are obtained by making careful estimates of the Lorentz multiplier norms of certain linear combinations of Fejer or Dirichlet kernels. For the case when the first indices are different the linear combination we analyze is in the spirit of a Rudin-Shapiro polynomial.
引用
收藏
页码:565 / 591
页数:27
相关论文
共 50 条
  • [1] MULTIPLIERS ON SOME LORENTZ SPACES
    Eryilmaz, Ilker
    Duyar, Cenap
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2011, 19 (01): : 93 - 107
  • [2] BILINEAR MULTIPLIERS ON LORENTZ SPACES
    Villarroya, Francisco
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2008, 58 (04) : 1045 - 1057
  • [3] Bilinear multipliers on Lorentz spaces
    Francisco Villarroya
    [J]. Czechoslovak Mathematical Journal, 2008, 58
  • [4] Transference of bilinear multipliers on Lorentz spaces
    Liu, Ziyao
    Fan, Dashan
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (01) : 87 - 107
  • [5] Transference of bilinear multipliers on Lorentz spaces
    Ziyao Liu
    Dashan Fan
    [J]. Annali di Matematica Pura ed Applicata (1923 -), 2024, 203 : 87 - 107
  • [6] About the problem of multipliers in the anisotropic Lorentz spaces
    Tleukhanova, N. T.
    Dzhumabayeva, A. A.
    [J]. BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2012, 66 (02): : 98 - 104
  • [7] Distinctness of spaces of Lorentz-Zygmund multipliers
    Hare, KE
    Mohanty, P
    [J]. STUDIA MATHEMATICA, 2005, 169 (02) : 143 - 161
  • [8] MULTIPLIERS AND RELATIVE COMPLETION IN WEIGHTED LORENTZ SPACES
    Cenap Duyar
    A.TuranGürkanli
    [J]. Acta Mathematica Scientia, 2003, (04) : 467 - 476
  • [9] ON THE EXISTENCE OF LINEAR AND BILINEAR MULTIPLIERS ON LORENTZ SPACES
    Sato, Enji
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2011, 14 (02): : 481 - 491
  • [10] Multipliers and relative completion in weighted Lorentz spaces
    Duyar, C
    Gürkanli, AT
    [J]. ACTA MATHEMATICA SCIENTIA, 2003, 23 (04) : 467 - 476