Bilinear Spectral Multipliers on Heisenberg Groups

被引:0
|
作者
Naiqi Song
Heping Liu
Jiman Zhao
机构
[1] Beijing Normal University,Key Laboratory of Mathematics and Complex Systems, Ministry of Education, Institution of Mathematics and Mathematical Education, School of Mathematical Sciences
[2] Beijing University of Chinese Medicine,School of Chinese Medicine
[3] Peking University,School of Mathematical Sciences
来源
Acta Mathematica Scientia | 2021年 / 41卷
关键词
Bilinear spectral multipliers; Heisenberg groups; boundedness; 42B15; 43A80;
D O I
暂无
中图分类号
学科分类号
摘要
As we know, thus far, there has appeared no definition of bilinear spectral multipliers on Heisenberg groups. In this article, we present one reasonable definition of bilinear spectral multipliers on Heisenberg groups and investigate its boundedness. We find some restrained conditions to separately ensure its boundedness from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\cal C}_0}\left({{\mathbb{H}^n}} \right) \times {L^2}\left({{\mathbb{H}^n}} \right)\;{\rm{to}}\;{L^2}\left({{\mathbb{H}^n}} \right)$$\end{document}, from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^2}\left({{\mathbb{H}^n}} \right) \times {{\cal C}_0}\left({{\mathbb{H}^n}} \right)\;{\rm{to}}\;{L^2}\left({{\mathbb{H}^n}} \right)$$\end{document}, and from Lp × Lq to Lr with 2 < p, q < ∞, 2 ≤ r ≤ ∞.
引用
收藏
页码:968 / 990
页数:22
相关论文
共 50 条
  • [1] BILINEAR SPECTRAL MULTIPLIERS ON HEISENBERG GROUPS
    宋乃琪
    刘和平
    赵纪满
    [J]. Acta Mathematica Scientia, 2021, 41 (03) : 968 - 990
  • [2] BILINEAR SPECTRAL MULTIPLIERS ON HEISENBERG GROUPS
    Song, Naiqi
    Liu, Heping
    Zhao, Jiman
    [J]. ACTA MATHEMATICA SCIENTIA, 2021, 41 (03) : 968 - 990
  • [3] ON SPECTRAL AND MULTIPLIERS FOR HEISENBERG AND RELATED GROUPS
    MULLER, D
    STEIN, EM
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1994, 73 (04): : 413 - 440
  • [4] Bilinear square spectral multipliers on stratified groups
    Jingxuan Fang
    Jiman Zhao
    [J]. Journal of Pseudo-Differential Operators and Applications, 2020, 11 : 267 - 288
  • [5] Bilinear square spectral multipliers on stratified groups
    Fang, Jingxuan
    Zhao, Jiman
    [J]. JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2020, 11 (01) : 267 - 288
  • [6] Oscillating spectral multipliers on groups of Heisenberg type
    Bramati, Roberto
    Ciatti, Paolo
    Green, John
    Wright, James
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2022, 38 (05) : 1529 - 1551
  • [7] Spectral multipliers on Heisenberg–Reiter and related groups
    Alessio Martini
    [J]. Annali di Matematica Pura ed Applicata (1923 -), 2015, 194 : 1135 - 1155
  • [8] Spectral multipliers on Heisenberg-Reiter and related groups
    Martini, Alessio
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (04) : 1135 - 1155
  • [9] Marcinkiewicz Multipliers and Lipschitz Spaces on Heisenberg Groups
    Han, Yanchang
    Han, Yongsheng
    Li, Ji
    Tan, Chaoqiang
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2019, 71 (03): : 607 - 627
  • [10] Spectral multipliers on discrete groups
    Alexopoulos, GK
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2001, 33 : 417 - 424