Marcinkiewicz Multipliers and Lipschitz Spaces on Heisenberg Groups

被引:10
|
作者
Han, Yanchang [1 ]
Han, Yongsheng [2 ]
Li, Ji [3 ]
Tan, Chaoqiang [4 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] Auburn Univ, Dept Math, Auburn, AL 36849 USA
[3] Macquarie Univ, Dept Math, N Ryde, NSW 2109, Australia
[4] Shantou Univ, Dept Math, Shantou 515041, Guangdong, Peoples R China
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Heisenberg group; Marcinkiewicz multiplier; flag singular integral; flag Lipschitz space; reproducing formula; discrete Littlewood-Paley analysis; SINGULAR-INTEGRALS; COVERING LEMMA; FLAG KERNELS; HP-THEORY;
D O I
10.4153/CJM-2018-003-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Marcinkiewicz multipliers are L-p bounded for 1 < p < infinity on the Heisenberg group H-n similar or equal to C-n x R (Muller, Ricci and Stein). This is surprising in the sense that these multipliers are invariant under a two parameter group of dilations on C-n x R, while there is no two parameter group of automorphic dilations on H-n. The purpose of this paper is to establish a theory of the flag Lipschitz space on the Heisenberg group H-n similar or equal to C-n x R in the sense, intermediate between the classical Lipschitz space on the Heisenberg group H-n and the product Lipschitz space on C-n x R. We characterize this flag Lipschitz space via the Littelewood-Paley theory and prove that flag singular integral operators, which include the Marcinkiewicz multipliers, are bounded on these flag Lipschitz spaces.
引用
收藏
页码:607 / 627
页数:21
相关论文
共 50 条