Bilinear Spectral Multipliers on Heisenberg Groups

被引:0
|
作者
Naiqi Song
Heping Liu
Jiman Zhao
机构
[1] Beijing Normal University,Key Laboratory of Mathematics and Complex Systems, Ministry of Education, Institution of Mathematics and Mathematical Education, School of Mathematical Sciences
[2] Beijing University of Chinese Medicine,School of Chinese Medicine
[3] Peking University,School of Mathematical Sciences
来源
Acta Mathematica Scientia | 2021年 / 41卷
关键词
Bilinear spectral multipliers; Heisenberg groups; boundedness; 42B15; 43A80;
D O I
暂无
中图分类号
学科分类号
摘要
As we know, thus far, there has appeared no definition of bilinear spectral multipliers on Heisenberg groups. In this article, we present one reasonable definition of bilinear spectral multipliers on Heisenberg groups and investigate its boundedness. We find some restrained conditions to separately ensure its boundedness from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\cal C}_0}\left({{\mathbb{H}^n}} \right) \times {L^2}\left({{\mathbb{H}^n}} \right)\;{\rm{to}}\;{L^2}\left({{\mathbb{H}^n}} \right)$$\end{document}, from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^2}\left({{\mathbb{H}^n}} \right) \times {{\cal C}_0}\left({{\mathbb{H}^n}} \right)\;{\rm{to}}\;{L^2}\left({{\mathbb{H}^n}} \right)$$\end{document}, and from Lp × Lq to Lr with 2 < p, q < ∞, 2 ≤ r ≤ ∞.
引用
收藏
页码:968 / 990
页数:22
相关论文
共 50 条