ABUNDANCE OF C1-ROBUST HOMOCLINIC TANGENCIES

被引:44
|
作者
Bonatti, Christian [1 ]
Diaz, Lorenzo J. [2 ]
机构
[1] Inst Math Bourgogne, F-21078 Dijon, France
[2] Pontificia Univ Catolica Rio de Janeiro, Dept Matemat, BR-22453900 Rio de Janeiro, Brazil
关键词
DIFFEOMORPHISMS; HYPERBOLICITY; DIMENSION; DYNAMICS; SYSTEMS; SETS;
D O I
10.1090/S0002-9947-2012-05445-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A diffeomorphism f has a C-1-robust homoclinic tangency if there is a C-1-neighborhood U of f such that every diffeomorphism in g is an element of U has a hyperbolic set Lambda(g), depending continuously on g, such that the stable and unstable le manifolds of Lambda(g), have some non-transverse intersection. For every manifold of dimension greater than or equal to three we exhibit a local mechanism (blender-horseshoes) generating diffeomorphisms with C-1-robust homoclinic tangencies. Using blender-horseshoes, we prove that homoclinic classes of C-1-generic diffeomorphisms containing saddles with different indices and that do not admit dominated splittings (of appropriate dimensions) display C-1-robust homoclinic tangencies.
引用
收藏
页码:5111 / 5148
页数:38
相关论文
共 50 条
  • [1] GENERATION OF HOMOCLINIC TANGENCIES BY C1-PERTURBATIONS
    Gourmelon, Nikolaz
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 26 (01) : 1 - 42
  • [2] Homoclinic tangencies leading to robust heterodimensional cycles
    Barrientos, Pablo G.
    Diaz, Lorenzo J.
    Perez, Sebastian A.
    MATHEMATISCHE ZEITSCHRIFT, 2022, 302 (01) : 519 - 558
  • [3] Homoclinic tangencies leading to robust heterodimensional cycles
    Pablo G. Barrientos
    Lorenzo J. Díaz
    Sebastián A. Pérez
    Mathematische Zeitschrift, 2022, 302 : 519 - 558
  • [4] Homoclinic tangencies in Rn
    Rayskin, V
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 12 (03) : 465 - 480
  • [5] Quasiattractors and homoclinic tangencies
    Gonchenko, SV
    Shilnikov, LP
    Turaev, DV
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1997, 34 (2-4) : 195 - 227
  • [6] STARTING HOMOCLINIC TANGENCIES NEAR 1:1 RESONANCES
    Paez Chavez, Joseph
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (10): : 3157 - 3172
  • [7] On C1-robust transitivity of volume-preserving flows
    Bessa, Mario
    Rocha, Jorge
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (11) : 3127 - 3143
  • [8] Hopf bifurcations and homoclinic tangencies
    Martín, JC
    NONLINEARITY, 1999, 12 (04) : 893 - 902
  • [9] Homoclinic tangencies and dominated splittings
    Wen, L
    NONLINEARITY, 2002, 15 (05) : 1445 - 1469
  • [10] Rigorous computations of homoclinic tangencies
    Arai, Zin
    Mischaikow, Konstantin
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2006, 5 (02): : 280 - 292