ABUNDANCE OF C1-ROBUST HOMOCLINIC TANGENCIES

被引:45
|
作者
Bonatti, Christian [1 ]
Diaz, Lorenzo J. [2 ]
机构
[1] Inst Math Bourgogne, F-21078 Dijon, France
[2] Pontificia Univ Catolica Rio de Janeiro, Dept Matemat, BR-22453900 Rio de Janeiro, Brazil
关键词
DIFFEOMORPHISMS; HYPERBOLICITY; DIMENSION; DYNAMICS; SYSTEMS; SETS;
D O I
10.1090/S0002-9947-2012-05445-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A diffeomorphism f has a C-1-robust homoclinic tangency if there is a C-1-neighborhood U of f such that every diffeomorphism in g is an element of U has a hyperbolic set Lambda(g), depending continuously on g, such that the stable and unstable le manifolds of Lambda(g), have some non-transverse intersection. For every manifold of dimension greater than or equal to three we exhibit a local mechanism (blender-horseshoes) generating diffeomorphisms with C-1-robust homoclinic tangencies. Using blender-horseshoes, we prove that homoclinic classes of C-1-generic diffeomorphisms containing saddles with different indices and that do not admit dominated splittings (of appropriate dimensions) display C-1-robust homoclinic tangencies.
引用
收藏
页码:5111 / 5148
页数:38
相关论文
共 50 条
  • [31] Robust Heteroclinic Tangencies
    Barrientos, Pablo G.
    Perez, Sebastian A.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2020, 51 (04): : 1041 - 1056
  • [32] Three-dimensional dissipative diffeomorphisms with homoclinic tangencies
    Tatjer, JC
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2001, 21 : 249 - 302
  • [33] Existence of generic cubic homoclinic tangencies for Henon maps
    Kiriki, Shin
    Soma, Teruhiko
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2013, 33 : 1029 - 1051
  • [34] HOMOCLINIC TANGENCIES FOR HYPERBOLIC SETS OF LARGE HAUSDORFF DIMENSION
    PALIS, J
    YOCCOZ, JC
    ACTA MATHEMATICA, 1994, 172 (01) : 91 - 136
  • [35] Homoclinic tangencies near cascades of period doubling bifurcations
    Catsigeras, E
    Enrich, H
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (03): : 255 - 299
  • [36] HOMOCLINIC TANGENCIES TO RESONANT SADDLES AND DISCRETE LORENZAT TRACTORS
    Gonchenko, Sergey
    Ovsyannikov, Ivan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2017, 10 (02): : 273 - 288
  • [37] HOMOCLINIC TANGENCIES IN THE DYNAMICS OF ARTICULATED PIPES CONVEYING FLUID
    CHAMPNEYS, AR
    PHYSICA D, 1993, 62 (1-4): : 347 - 359
  • [38] On the approximation of Henon-like attractors by homoclinic tangencies
    Ures, R
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1995, 15 : 1223 - 1229
  • [39] Homoclinic tangencies and routes to chaos in a dripping faucet experiment
    Pinto, RD
    Sartorelli, JC
    Gonçalves, WM
    PHYSICA A, 2001, 291 (1-4): : 244 - 254
  • [40] Robust Heteroclinic Tangencies
    Pablo G. Barrientos
    Sebastián A. Pérez
    Bulletin of the Brazilian Mathematical Society, New Series, 2020, 51 : 1041 - 1056