ABUNDANCE OF C1-ROBUST HOMOCLINIC TANGENCIES

被引:45
|
作者
Bonatti, Christian [1 ]
Diaz, Lorenzo J. [2 ]
机构
[1] Inst Math Bourgogne, F-21078 Dijon, France
[2] Pontificia Univ Catolica Rio de Janeiro, Dept Matemat, BR-22453900 Rio de Janeiro, Brazil
关键词
DIFFEOMORPHISMS; HYPERBOLICITY; DIMENSION; DYNAMICS; SYSTEMS; SETS;
D O I
10.1090/S0002-9947-2012-05445-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A diffeomorphism f has a C-1-robust homoclinic tangency if there is a C-1-neighborhood U of f such that every diffeomorphism in g is an element of U has a hyperbolic set Lambda(g), depending continuously on g, such that the stable and unstable le manifolds of Lambda(g), have some non-transverse intersection. For every manifold of dimension greater than or equal to three we exhibit a local mechanism (blender-horseshoes) generating diffeomorphisms with C-1-robust homoclinic tangencies. Using blender-horseshoes, we prove that homoclinic classes of C-1-generic diffeomorphisms containing saddles with different indices and that do not admit dominated splittings (of appropriate dimensions) display C-1-robust homoclinic tangencies.
引用
收藏
页码:5111 / 5148
页数:38
相关论文
共 50 条
  • [21] On the relation between predictability and homoclinic tangencies
    Harle, M
    Feudel, U
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (08): : 2523 - 2534
  • [22] New phenomena associated with homoclinic tangencies
    Newhouse, SE
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2004, 24 : 1725 - 1738
  • [23] Unfolding homoclinic tangencies inside horseshoes: hyperbolicity, fractal dimensions and persistent tangencies
    Rios, IL
    NONLINEARITY, 2001, 14 (03) : 431 - 462
  • [24] C2-robust heterodimensional tangencies
    Kiriki, Shin
    Soma, Teruhiko
    NONLINEARITY, 2012, 25 (12) : 3277 - 3299
  • [25] C2-perturbations of Hopf's bifurcation points and homoclinic tangencies
    Martín, JC
    Mora, L
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (04) : 1241 - 1245
  • [26] Homoclinic tangencies of an arbitrary order in newhouse domains
    Gonchenko S.V.
    Turaev D.V.
    Shil'Nikov L.P.
    Journal of Mathematical Sciences, 2001, 105 (1) : 1738 - 1778
  • [27] Homoclinic tangencies and fractal invariants in arbitrary dimension
    Moreira, CG
    Palis, J
    Viana, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (05): : 475 - 480
  • [28] Purely imaginary eigenvalues from homoclinic tangencies
    Morales, C. A.
    APPLIED MATHEMATICS LETTERS, 2012, 25 (11) : 2005 - 2008
  • [29] Classification of homoclinic tangencies for periodically perturbed systems
    Tang, Y
    Yang, FH
    Chen, GR
    Zhou, TS
    CHAOS SOLITONS & FRACTALS, 2006, 28 (01) : 76 - 89
  • [30] Generalized Henon map and bifurcations of homoclinic tangencies
    Gonchenko, VS
    Kuznetsov, YA
    Meijer, HGE
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2005, 4 (02): : 407 - 436