Homoclinic tangencies leading to robust heterodimensional cycles

被引:0
|
作者
Pablo G. Barrientos
Lorenzo J. Díaz
Sebastián A. Pérez
机构
[1] Universidade Federal Fluminense,Instituto de Matemática e Estatística
[2] PUC-Rio,Departamento de Matemática
[3] Pontificia Universidad Católica de Valparaíso,Instituto de Matemáticas
来源
Mathematische Zeitschrift | 2022年 / 302卷
关键词
Blender; Cycles; Entropy; Heterodimensional cycle; Homoclinic tangency; Hyperbolic measure; Lyapunov exponent; Robust properties; Primary 37C20 Secondary 37C29; 37D20; 37D30;
D O I
暂无
中图分类号
学科分类号
摘要
We consider Cr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^r$$\end{document} (r⩾1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\geqslant 1$$\end{document}) diffeomorphisms f defined on manifolds of dimension ⩾3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\geqslant 3$$\end{document} with homoclinic tangencies associated to saddles. Under generic properties, we show that if the saddle is homoclinically related to a blender then the diffeomorphism f can be Cr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^r$$\end{document} approximated by diffeomorphisms with C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} robust heterodimensional cycles. As an application, we show that the classic Simon–Asaoka’s examples of diffeomorphisms with C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} robust homoclinic tangencies also display C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} robust heterodimensional cycles. In a second application, we consider homoclinic tangencies associated to hyperbolic sets. When the entropy of these sets is large enough we obtain C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} robust cycles after C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} perturbations.
引用
收藏
页码:519 / 558
页数:39
相关论文
共 50 条
  • [1] Homoclinic tangencies leading to robust heterodimensional cycles
    Barrientos, Pablo G.
    Diaz, Lorenzo J.
    Perez, Sebastian A.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2022, 302 (01) : 519 - 558
  • [2] HETERODIMENSIONAL TANGENCIES ON CYCLES LEADING TO STRANGE ATTRACTORS
    Kiriki, Shin
    Nishizawa, Yusuke
    Soma, Teruhiko
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 27 (01) : 285 - 300
  • [3] Generic diffeomorphisms away from homoclinic tangencies and heterodimensional cycles
    Lan Wen*
    [J]. Bulletin of the Brazilian Mathematical Society, 2004, 35 : 419 - 452
  • [4] Generic diffieomorphisms away from homoclinic tangencies and heterodimensional cycles
    Wen, L
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2004, 35 (03): : 419 - 452
  • [5] NONTRANSVERSE HETERODIMENSIONAL CYCLES: STABILISATION AND ROBUST TANGENCIES
    Diaz, Lorenzo J.
    Perez, Sebastian A.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022,
  • [6] NONTRANSVERSE HETERODIMENSIONAL CYCLES: STABILISATION AND ROBUST TANGENCIES
    Diaz, Lorenzo J.
    Perez, Sebastian A.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (02) : 891 - 944
  • [7] Heterodimensional tangencies
    Diaz, L. J.
    Nogueira, A.
    Pujals, E. R.
    [J]. NONLINEARITY, 2006, 19 (11) : 2543 - 2566
  • [8] PERSISTENT HOMOCLINIC TANGENCIES AND THE UNFOLDING OF CYCLES
    DIAZ, LJ
    URES, R
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1994, 11 (06): : 643 - 659
  • [9] C2-robust heterodimensional tangencies
    Kiriki, Shin
    Soma, Teruhiko
    [J]. NONLINEARITY, 2012, 25 (12) : 3277 - 3299
  • [10] Hopf-homoclinic Bifurcations and Heterodimensional Cycles
    Tomizawa, Shuntaro
    [J]. TOKYO JOURNAL OF MATHEMATICS, 2019, 42 (02) : 449 - 469