Heterodimensional tangencies

被引:17
|
作者
Diaz, L. J.
Nogueira, A.
Pujals, E. R.
机构
[1] Pontificia Univ Catolica Rio de Janeiro, Dept Matemat, BR-22453900 Rio de Janeiro, Brazil
[2] IMPA, BR-22460320 Rio De Janeiro, Brazil
关键词
D O I
10.1088/0951-7715/19/11/003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider C-1-diffeomorphisms f defined on three-dimensional manifolds having a pair of saddles P-f and Q(f) (of unstable indices one and two) whose homoclinic classes coincide persistently. We prove that if the two-dimensional stable manifold of P-f and the two-dimensional unstable manifold of Q(f) have some non-transverse intersection (a heterodimensional tangency) the unfolding of such a tangency leads to diffeomorphisms h such that the homoclinic class of Q(h) (the continuation of Q(f) for h) is robustly non-dominated. This leads to the phenomena of (C-1-locally generic) coexistence of infinitely many sinks or sources and, in some relevant cases, to the coexistence of infinitely many minimal Cantor sets. We give examples where the previous dynamical configuration occurs, providing a natural transition from partially hyperbolic to robustly non-dominated dynamics.
引用
收藏
页码:2543 / 2566
页数:24
相关论文
共 50 条
  • [1] Homoclinic tangencies leading to robust heterodimensional cycles
    Barrientos, Pablo G.
    Diaz, Lorenzo J.
    Perez, Sebastian A.
    MATHEMATISCHE ZEITSCHRIFT, 2022, 302 (01) : 519 - 558
  • [2] Homoclinic tangencies leading to robust heterodimensional cycles
    Pablo G. Barrientos
    Lorenzo J. Díaz
    Sebastián A. Pérez
    Mathematische Zeitschrift, 2022, 302 : 519 - 558
  • [3] NONTRANSVERSE HETERODIMENSIONAL CYCLES: STABILISATION AND ROBUST TANGENCIES
    Diaz, Lorenzo J.
    Perez, Sebastian A.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022,
  • [4] HETERODIMENSIONAL TANGENCIES ON CYCLES LEADING TO STRANGE ATTRACTORS
    Kiriki, Shin
    Nishizawa, Yusuke
    Soma, Teruhiko
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 27 (01) : 285 - 300
  • [5] NONTRANSVERSE HETERODIMENSIONAL CYCLES: STABILISATION AND ROBUST TANGENCIES
    Diaz, Lorenzo J.
    Perez, Sebastian A.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (02) : 891 - 944
  • [6] C2-robust heterodimensional tangencies
    Kiriki, Shin
    Soma, Teruhiko
    NONLINEARITY, 2012, 25 (12) : 3277 - 3299
  • [7] Generic diffeomorphisms away from homoclinic tangencies and heterodimensional cycles
    Lan Wen*
    Bulletin of the Brazilian Mathematical Society, 2004, 35 : 419 - 452
  • [8] Generic diffieomorphisms away from homoclinic tangencies and heterodimensional cycles
    Wen, L
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2004, 35 (03): : 419 - 452
  • [9] Tangencies and polynomial optimization
    Tien-Son Pham
    MATHEMATICAL PROGRAMMING, 2023, 199 (1-2) : 1239 - 1272
  • [10] Stabilization of heterodimensional cycles
    Bonatti, C.
    Diaz, L. J.
    Kiriki, S.
    NONLINEARITY, 2012, 25 (04)