Heterodimensional tangencies

被引:17
|
作者
Diaz, L. J.
Nogueira, A.
Pujals, E. R.
机构
[1] Pontificia Univ Catolica Rio de Janeiro, Dept Matemat, BR-22453900 Rio de Janeiro, Brazil
[2] IMPA, BR-22460320 Rio De Janeiro, Brazil
关键词
D O I
10.1088/0951-7715/19/11/003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider C-1-diffeomorphisms f defined on three-dimensional manifolds having a pair of saddles P-f and Q(f) (of unstable indices one and two) whose homoclinic classes coincide persistently. We prove that if the two-dimensional stable manifold of P-f and the two-dimensional unstable manifold of Q(f) have some non-transverse intersection (a heterodimensional tangency) the unfolding of such a tangency leads to diffeomorphisms h such that the homoclinic class of Q(h) (the continuation of Q(f) for h) is robustly non-dominated. This leads to the phenomena of (C-1-locally generic) coexistence of infinitely many sinks or sources and, in some relevant cases, to the coexistence of infinitely many minimal Cantor sets. We give examples where the previous dynamical configuration occurs, providing a natural transition from partially hyperbolic to robustly non-dominated dynamics.
引用
收藏
页码:2543 / 2566
页数:24
相关论文
共 50 条
  • [21] Hopf bifurcations and homoclinic tangencies
    Martín, JC
    NONLINEARITY, 1999, 12 (04) : 893 - 902
  • [22] Heterojunction and Heterodimensional Devices for Optoelectronics
    Nabet, B.
    Quaranta, F.
    Cola, A.
    IEEE MICROWAVE MAGAZINE, 2001, 2 (01) : 40 - 45
  • [23] Cubic tangencies and hyperbolic diffeomorphisms
    Ch. Bonatti
    L. J. Díaz
    F. Vuillemin
    Boletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society, 1998, 29 (1) : 99 - 144
  • [24] NOVEL HETERODIMENSIONAL DIODES AND TRANSISTORS
    SHUR, MS
    PEATMAN, WC
    PARK, H
    GRIMM, W
    HURT, M
    SOLID-STATE ELECTRONICS, 1995, 38 (09) : 1727 - 1730
  • [25] Homoclinic tangencies and dominated splittings
    Wen, L
    NONLINEARITY, 2002, 15 (05) : 1445 - 1469
  • [26] Robust Heterodimensional Cycles and Tame Dynamics
    Diaz, Lorenzo J.
    NEW TRENDS IN MATHEMATICAL PHYSICS, 2009, : 211 - 229
  • [27] Generic unfolding of a degenerate heterodimensional cycle
    Liu, Xingbo
    NONLINEAR DYNAMICS, 2017, 89 (02) : 833 - 850
  • [28] Robust tangencies of large codimension
    Barrientos, Pablo G.
    Raibekas, Artem
    NONLINEARITY, 2017, 30 (12) : 4369 - 4409
  • [29] Rigorous computations of homoclinic tangencies
    Arai, Zin
    Mischaikow, Konstantin
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2006, 5 (02): : 280 - 292
  • [30] Partial hyperbolicity and homoclinic tangencies
    Crovisier, Sylvain
    Sambarino, Martin
    Yang, Dawei
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (01) : 1 - 49