Heterodimensional tangencies

被引:17
|
作者
Diaz, L. J.
Nogueira, A.
Pujals, E. R.
机构
[1] Pontificia Univ Catolica Rio de Janeiro, Dept Matemat, BR-22453900 Rio de Janeiro, Brazil
[2] IMPA, BR-22460320 Rio De Janeiro, Brazil
关键词
D O I
10.1088/0951-7715/19/11/003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider C-1-diffeomorphisms f defined on three-dimensional manifolds having a pair of saddles P-f and Q(f) (of unstable indices one and two) whose homoclinic classes coincide persistently. We prove that if the two-dimensional stable manifold of P-f and the two-dimensional unstable manifold of Q(f) have some non-transverse intersection (a heterodimensional tangency) the unfolding of such a tangency leads to diffeomorphisms h such that the homoclinic class of Q(h) (the continuation of Q(f) for h) is robustly non-dominated. This leads to the phenomena of (C-1-locally generic) coexistence of infinitely many sinks or sources and, in some relevant cases, to the coexistence of infinitely many minimal Cantor sets. We give examples where the previous dynamical configuration occurs, providing a natural transition from partially hyperbolic to robustly non-dominated dynamics.
引用
收藏
页码:2543 / 2566
页数:24
相关论文
共 50 条
  • [41] PERSISTENT HOMOCLINIC TANGENCIES AND THE UNFOLDING OF CYCLES
    DIAZ, LJ
    URES, R
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1994, 11 (06): : 643 - 659
  • [42] TANGENCIES BETWEEN STABLE AND UNSTABLE MANIFOLDS
    BATTELLI, F
    PALMER, KJ
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1992, 121 : 73 - 90
  • [43] TANGENCIES OF GENERIC REAL PROJECTIVE HYPERSURFACES
    DIMCA, A
    MATHEMATICA SCANDINAVICA, 1983, 53 (02) : 216 - 220
  • [44] Spiral Arm Tangencies in the Milky Way
    Benjamin, Robert A.
    GALAXY DISK IN COSMOLOGICAL CONTEXT, PROCEEDINGS OF THE 254TH SYMPOSIUM OF THE IAU, 2009, (254): : 319 - 322
  • [45] Partial Symmetry Breaking and Heteroclinic Tangencies
    Labouriau, Isabel S.
    Rodrigues, Alexandre A. P.
    PROGRESS AND CHALLENGES IN DYNAMICAL SYSTEMS, 2013, 54 : 281 - 299
  • [46] PERSISTENT HOMOCLINIC TANGENCIES IN THE HENON FAMILY
    KAN, IT
    KOCAK, H
    YORKE, JA
    PHYSICA D, 1995, 83 (04): : 313 - 325
  • [47] HOMOCLINIC TANGENCIES - MODULI AND TOPOLOGY OF SEPARATRICES
    POSTHUMUS, RA
    TAKENS, F
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1993, 13 : 369 - 385
  • [48] Heterodimensional Kondo superlattices with strong anisotropy
    Feng, Qi
    Duan, Junxi
    Wang, Ping
    Jiang, Wei
    Peng, Huimin
    Zhong, Jinrui
    Cao, Jin
    Hu, Yuqing
    Li, Qiuli
    Wang, Qinsheng
    Zhou, Jiadong
    Yao, Yugui
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [49] Moduli of Surface Diffeomorphisms with Cubic Tangencies
    Hashimoto, Shinobu
    TOKYO JOURNAL OF MATHEMATICS, 2019, 42 (02) : 371 - 397
  • [50] Homoclinic tangencies and hyperbolicity for surface diffeomorphisms
    Pujals, ER
    Sambarino, M
    ANNALS OF MATHEMATICS, 2000, 151 (03) : 961 - 1023