Exactly Solvable Wadati Potentials in the PT-Symmetric Gross-Pitaevskii Equation

被引:20
|
作者
Barashenkov, I. V. [1 ,2 ]
Zezyulin, D. A. [3 ,4 ]
Konotop, V. V. [3 ,4 ]
机构
[1] Natl Inst Theoret Phys, Stellenbosch, Western Cape, South Africa
[2] Univ Cape Town, Dept Math, ZA-7701 Cape Town, South Africa
[3] Univ Lisbon, Fac Ciencias, Ctr Fis Teor & Computac, Edificio C8, P-1749016 Lisbon, Portugal
[4] Univ Lisbon, Fac Ciencias, Dept Fis, Edificio C8, P-1749016 Lisbon, Portugal
关键词
SCATTERING; BUBBLES; MODES;
D O I
10.1007/978-3-319-31356-6_9
中图分类号
O59 [应用物理学];
学科分类号
摘要
This note examines Gross-Pitaevskii equations with PT-symmetric potentials of the Wadati type: V = -W-2 + iW(x). We formulate a recipe for the construction of Wadati potentials supporting exact localised solutions. The general procedure is exemplified by equations with attractive and repulsive cubic nonlinearity bearing a variety of bright and dark solitons.
引用
收藏
页码:143 / 155
页数:13
相关论文
共 50 条
  • [1] Inverse scattering solutions and dynamics for a nonlocal nonlinear Gross-Pitaevskii equation with PT-symmetric external potentials
    Yu, Fajun
    APPLIED MATHEMATICS LETTERS, 2019, 92 : 108 - 114
  • [2] Exactly solvable Gross-Pitaevskii type equations
    Liu, Yuan-Yuan
    Li, Wen-Du
    Dai, Wu-Sheng
    JOURNAL OF PHYSICS COMMUNICATIONS, 2021, 5 (01): : 1 - 11
  • [3] Localised Nonlinear Modes in the PT-Symmetric Double-Delta Well Gross-Pitaevskii Equation
    Barashenkov, I. V.
    Zezyulin, D. A.
    NON-HERMITIAN HAMILTONIANS IN QUANTUM PHYSICS, 2016, 184 : 123 - 142
  • [4] Collapse in the symmetric Gross-Pitaevskii equation
    Rybin, AV
    Varzugin, GG
    Timonen, J
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2004, 6 (05) : S392 - S396
  • [5] On stable solitons and interactions of the generalized Gross-Pitaevskii equation with PT - and non-PT-symmetric potentials
    Yan, Zhenya
    Chen, Yong
    Wen, Zichao
    CHAOS, 2016, 26 (08)
  • [6] Unified approaches for construction of PT-symmetric quasi-exactly solvable potentials
    Bera, P. K.
    Datta, J.
    INDIAN JOURNAL OF PHYSICS, 2007, 81 (03) : 377 - 388
  • [7] Exactly solvable PT-symmetric models in two dimensions
    Agarwal, Kaustubh S.
    Pathak, Rajeev K.
    Joglekar, Yogesh N.
    EPL, 2015, 112 (03)
  • [8] Novel robust characteristic for the flat-top bright wave in PT-symmetric higher-order Gross-Pitaevskii equation
    Li, Li
    Yu, Fajun
    Zhang, Jiefang
    CHAOS SOLITONS & FRACTALS, 2024, 182
  • [9] Asymptotic Properties of Solvable PT-Symmetric Potentials
    Levai, Geza
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (04) : 997 - 1004
  • [10] Solvable PT-symmetric potentials in higher dimensions
    Levai, G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (15) : F273 - F280