Unified approaches for construction of PT-symmetric quasi-exactly solvable potentials

被引:0
|
作者
Bera, P. K. [1 ]
Datta, J. [1 ]
机构
[1] Dumkal Coll, Dept Phys, Murshidabad 742303, W Bengal, India
关键词
SUSY algebras; construction of PTQES potentials;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Unified approaches in the light of supersymmetric quantum mechanics (SSQM) have been suggested for generating one dimensional PT-symmetric quasi-exactly solvable (PTQES) singular and non-singular potentials, which are new. These PTQES potentials are constructed with the help of Kustaanheino-Steifel transformation of the co-ordinate.
引用
收藏
页码:377 / 388
页数:12
相关论文
共 50 条
  • [1] PT-symmetric, quasi-exactly solvable matrix Hamiltonians
    Brihaye, Yves
    Nininahazwe, Ancilla
    Mandal, Bhabani Prasad
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (43) : 13063 - 13073
  • [2] A unified treatment of exactly solvable and quasi-exactly solvable quantum potentials
    Bagchi, B
    Ganguly, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (11): : L161 - L167
  • [3] METHODS FOR GENERATING QUASI-EXACTLY SOLVABLE POTENTIALS
    GANGOPADHYAYA, A
    KHARE, A
    SUKHATME, UP
    PHYSICS LETTERS A, 1995, 208 (4-6) : 261 - 268
  • [4] Methods for generating quasi-exactly solvable potentials
    Phys Lett Sect A Gen At Solid State Phys, 4-6 (261):
  • [5] Generalization of quasi-exactly solvable and isospectral potentials
    P. K. Bera
    J. Datta
    M. M. Panja
    Tapas Sil
    Pramana, 2007, 69 : 337 - 367
  • [6] Quasi-exactly solvable periodic and random potentials
    Tkachuk, VM
    Voznyak, O
    PHYSICS LETTERS A, 2002, 301 (3-4) : 177 - 183
  • [7] New quasi-exactly solvable periodic potentials
    Xie, Qiong-Tao
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (28)
  • [8] Generalization of quasi-exactly solvable and isospectral potentials
    Bera, P. K.
    Datta, J.
    Panja, M. M.
    Sil, Tapas
    PRAMANA-JOURNAL OF PHYSICS, 2007, 69 (03): : 337 - 367
  • [9] New quasi-exactly solvable sextic polynomial potentials
    Bender, CM
    Monou, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (10): : 2179 - 2187
  • [10] Quasi-exactly solvable potentials on the line and orthogonal polynomials
    Finkel, F
    GonzalezLopez, A
    Rodriguez, MA
    JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (08) : 3954 - 3972