A unified treatment of exactly solvable and quasi-exactly solvable quantum potentials

被引:27
|
作者
Bagchi, B [1 ]
Ganguly, A [1 ]
机构
[1] Univ Calcutta, Dept Appl Math, Kolkata 700009, W Bengal, India
来源
关键词
D O I
10.1088/0305-4470/36/11/101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By exploiting the hidden algebraic structure of the Schrodinger Hamiltonian, namely the sl(2), we propose a unified approach of generating both exactly solvable and quasi-exactly solvable potentials. We obtain, in this way, two new classes of quasi-exactly solvable systems one of which is of periodic type while the other hyperbolic.
引用
收藏
页码:L161 / L167
页数:7
相关论文
共 50 条
  • [1] ON CONDITIONALLY QUASI-EXACTLY SOLVABLE CLASS OF QUANTUM POTENTIALS
    DUTT, R
    VARSHNI, YP
    ADHIKARI, R
    [J]. MODERN PHYSICS LETTERS A, 1995, 10 (07) : 597 - 604
  • [2] Exactly and quasi-exactly solvable 'discrete' quantum mechanics
    Sasaki, Ryu
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 369 (1939): : 1301 - 1318
  • [3] METHODS FOR GENERATING QUASI-EXACTLY SOLVABLE POTENTIALS
    GANGOPADHYAYA, A
    KHARE, A
    SUKHATME, UP
    [J]. PHYSICS LETTERS A, 1995, 208 (4-6) : 261 - 268
  • [4] Generalization of quasi-exactly solvable and isospectral potentials
    P. K. Bera
    J. Datta
    M. M. Panja
    Tapas Sil
    [J]. Pramana, 2007, 69 : 337 - 367
  • [5] Quasi-exactly solvable periodic and random potentials
    Tkachuk, VM
    Voznyak, O
    [J]. PHYSICS LETTERS A, 2002, 301 (3-4) : 177 - 183
  • [6] New quasi-exactly solvable periodic potentials
    Xie, Qiong-Tao
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (28)
  • [7] Generalization of quasi-exactly solvable and isospectral potentials
    Bera, P. K.
    Datta, J.
    Panja, M. M.
    Sil, Tapas
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2007, 69 (03): : 337 - 367
  • [8] QUASI-EXACTLY SOLVABLE MODELS IN QUANTUM CHEMISTRY
    Karwowski, Jacek
    Szewc, Kamil
    [J]. COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS, 2008, 73 (10) : 1372 - 1390
  • [9] Quasi-exactly solvable potentials on the line and orthogonal polynomials
    Finkel, F
    GonzalezLopez, A
    Rodriguez, MA
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (08) : 3954 - 3972
  • [10] New quasi-exactly solvable sextic polynomial potentials
    Bender, CM
    Monou, M
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (10): : 2179 - 2187