Solvable PT-symmetric potentials in higher dimensions

被引:16
|
作者
Levai, G. [1 ]
机构
[1] Hungarian Acad Sci, Inst Nucl Res, H-4001 Debrecen, Hungary
关键词
D O I
10.1088/1751-8113/40/15/F02
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
PT-symmetric, non-relativistic quantum mechanical potentials are discussed in two and three spatial dimensions. Conditions are formulated under which these potentials are PT-symmetric and can be solved exactly by the separation of the radial and angular variables. It is found that the angular variables play an essential role in introducing non-Hermiticity via the imaginary potential terms. A simple partially exactly solvable potential is used to demonstrate various aspects of PT symmetry in both two and three dimensions. Possible generalizations of the results are outlined.
引用
收藏
页码:F273 / F280
页数:8
相关论文
共 50 条
  • [1] Solvable PT-symmetric potentials in 2 and 3 dimensions
    Levai, Geza
    5TH INTERNATIONAL SYMPOSIUM ON QUANTUM THEORY AND SYMMETRIES QTS5, 2008, 128
  • [2] Asymptotic Properties of Solvable PT-Symmetric Potentials
    Levai, Geza
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (04) : 997 - 1004
  • [3] Exactly solvable PT-symmetric models in two dimensions
    Agarwal, Kaustubh S.
    Pathak, Rajeev K.
    Joglekar, Yogesh N.
    EPL, 2015, 112 (03)
  • [4] Solvable PT-symmetric Hamiltonians
    M. Znojil
    Physics of Atomic Nuclei, 2002, 65 : 1149 - 1151
  • [5] Solvable PT-symmetric Hamiltonians
    Znojil, M
    PHYSICS OF ATOMIC NUCLEI, 2002, 65 (06) : 1149 - 1151
  • [6] Unified approaches for construction of PT-symmetric quasi-exactly solvable potentials
    Bera, P. K.
    Datta, J.
    INDIAN JOURNAL OF PHYSICS, 2007, 81 (03) : 377 - 388
  • [7] Exactly Solvable Wadati Potentials in the PT-Symmetric Gross-Pitaevskii Equation
    Barashenkov, I. V.
    Zezyulin, D. A.
    Konotop, V. V.
    NON-HERMITIAN HAMILTONIANS IN QUANTUM PHYSICS, 2016, 184 : 143 - 155
  • [8] Nonlocal PT-symmetric potentials
    Roy, B.
    Roychoudhury, R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (29) : 8479 - 8486
  • [9] Superoscillatory PT-symmetric potentials
    Eliezer, Yaniv
    Bahabad, Alon
    Malomed, Boris A.
    PHYSICAL REVIEW A, 2018, 98 (04)
  • [10] PT-symmetric sextic potentials
    Bagchi, B
    Cannata, F
    Quesne, C
    PHYSICS LETTERS A, 2000, 269 (2-3) : 79 - 82